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A Parallel Surrogate Model Assisted Evolutionary
Algorithm for Electromagnetic Design Optimization

Mobayode O. Akinsolu Member, IEEE, Bo Liu Senior Member, IEEE, Vic Grout, Pavlos I. Lazaridis Senior
Member, IEEE, Maria Evelina Mognaschi Member, IEEE, Paolo Di Barba Member, IEEE

Abstract—Optimization efficiency is a major challenge for
electromagnetic (EM) device, circuit and machine design. Al-
though both surrogate model-assisted evolutionary algorithms
(SAEAs) and parallel computing are playing important roles in
addressing this challenge, there is little research that investigates
their integration to benefit from both techniques. In this paper,
a new method, called parallel SAEA for electromagnetic design
(PSAED), is proposed. A state-of-the-art SAEA framework, sur-
rogate model-aware evolutionary search, is used as the foundation
of PSAED. Considering the landscape characteristics of EM
design problems, three differential evolution mutation operators
are selected and organized in a particular way. A new SAEA
framework is then proposed to make use of the selected mutation
operators in a parallel computing environment. PSAED is tested
by a micromirror and a dielectric resonator antenna as well as
four mathematical benchmark problems of various complexity.
Comparisons with state-of-the-art methods verify the advantages
of PSAED in terms of efficiency and optimization capacity.

Index Terms—Electromagnetic design optimization; Electro-
magnetic design, Surrogate-model-assisted evolutionary algo-
rithm; Computationally expensive optimization; Gaussian pro-
cess; Differential evolution

I. INTRODUCTION

Electromagnetic devices, circuits and machines are play-
ing important roles in modern industry. Typical examples
include antennas, filters, radio frequency circuits and systems,
magnetic actuators and various kinds of electromechanical
systems. With increasingly stringent design specifications and
shortened time-to-market, global and local optimization meth-
ods are replacing the traditional trial-and-error design method
[1], [2], [3]. Amongst these methods, evolutionary algorithms
(EAs) such as differential evolution (DE) [4] and particle
swarm optimization (PSO) [5] tend to play a leading role
because of their global optimization capability, not requiring
an initial design and robustness [1], [6], [7], [8], [9].

However, obtaining optimal designs in a reasonable opti-
mization time becomes a challenge. To obtain an accurate per-
formance estimation, numerical technique-based electromag-
netic (EM) simulations are often necessary (e.g., employing
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finite element analysis, method of moments), which are com-
putationally expensive. Moreover, standard global optimization
algorithms often need a large number of such simulations to
get the optimum [10]. As a result, the optimization time can
be very long or even prohibitive. To address this challenge,
aside from some problem-specific techniques (e.g., analytical
models), two major efficiency improvement methods include
parallel computing and surrogate model-based optimization.

Employing parallel computing in an EA process is straight-
forward because the simulations of candidate designs are
independent of each other in most cases. In recent years,
the development of cloud computing enables EM designers
to use distributed workers and memory for simulating multi-
ple candidate designs simultaneously. Even in a standalone
multicore desktop workstation, it is possible to parallelize
several simulations, which is supported by some widely used
simulation tools. However, due to the computing overhead of
EM/multiphysics simulations and the financial cost of using
shared computing resources, the number of candidate designs
being parallelly simulated is often only a few in many cases
[11]. Hence, although alleviated, the challenge in optimization
efficiency still remains.

Another popular method is surrogate model-based optimiza-
tion [12], [13], [14]. Although some novel surrogate model-
based optimization methods aim at improving the optimization
capacity [15], most of them aim at efficiency improvement.
They employ surrogate models to replace computationally
expensive exact function evaluations (e.g., EM simulations)
so as to significantly reduce the computational cost. Surrogate
models are computationally cheap approximation models of
the exact evaluations, which are often constructed by sta-
tistical learning techniques. The search engine can be infill
sampling, local search and global search. When EA becomes
the search engine, surrogate model-assisted evolutionary algo-
rithms (SAEAs) are constructed. In SAEA research, there is
a critical trade-off between the surrogate model quality and
the efficiency (reflected by the necessary number of exact
evaluations), and the method to find an appropriate trade-off is
called surrogate model management [16]. Based on different
surrogate model management routines, there are various kinds
of SAEAs.

The surrogate model-aware evolutionary search (SMAS)
framework is a state-of-the-art SAEA framework [17], [18].
In particular, it has been widely applied in EM design opti-
mization. Several state-of-the-art mm-wave integrated circuit,
antenna, filter and microelectromechanical system design opti-
mization methods borrow some idea of the SMAS framework
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[14], [19], [20], [21]. For these EM design problems, the
SMAS framework-assisted SAEAs outperform several other
state-of-the-art SAEAs in terms of efficiency and optimization
quality [14], [19], [20]. In addition, algorithms based on
SMAS are becoming industry standard methods for antenna
design. However, the SMAS framework also requires a long
optimization time when the fidelity of the EM model is very
high or several fields need to be analyzed in a single simulation
(i.e., each simulation is computationally very expensive) [22].

It is a natural idea to combine the SMAS framework and
parallel computing to address the challenge of optimization
efficiency. However, this is NOT trivial. The SMAS framework
is sequential (i.e., in contradiction to parallelization), and a
single simulation is carried out in each iteration. The next
candidate design to be simulated is then decided by the
updated surrogate model [17], [18].

The goal of this paper is to enable the SMAS framework
to work in a parallel computing environment for efficient
EM design optimization. The following problems will be
investigated: (1) What are the landscape characteristics of
EM design problems and what search operators are needed
for effective optimization under the SMAS framework; (2)
How to obtain an optimal trade-off between the surrogate
model quality and the efficiency for the targeted problem when
considering parallel simulations; and (3) How to develop a
parallel SAEA framework taking full advantage of SMAS?
Based on the above investigation, a new algorithm, called
parallel surrogate model-assisted evolutionary algorithm for
electromagnetic design (PSAED), is proposed. In particular,
PSAED aims to:

• Obtain at least comparable results with methods which
directly embed EM simulations in a standard EA (often
considered as the benchmark in terms of solution quality);

• Support parallel computing environments, where a few
candidate designs can be simulated simultaneously;

• Significantly enhance the efficiency of standard parallel
simulation-based EAs;

• Be generic in handling EM design optimization problems
without the need for initial solutions or an ad-hoc process.

The remainder of the paper is organized as follows: Section
II presents the basic techniques. Section III elaborates the
PSAED method, including landscape characteristics analysis
of EM design problems, the behavioral study of SMAS for
the targeted design landscapes, mutation strategy selection
and the new parallel SAEA framework. Section IV presents
the performance of PSAED using a micromirror, a dielectric
resonator antenna and four mathematical benchmark problems.
Comparisons with parallel DE, parallel PSO and parallel
SMAS are carried out. The concluding remarks are provided
in Section V.

II. BASIC TECHNIQUES

A. Gaussian Process Surrogate Modeling

Gaussian Process (GP) is the surrogate modeling method
chosen for PSAED [23], which is widely used in efficient EM
design exploration [14], [13], [24]. GP works as follows [23]:

For a given set of n observations x = (x1, . . . , xn) and y =
(y1, . . . , yn), GP modeling assumes that the objective function
y(x) is a sample of a Gaussian distributed stochastic process
with mean µ and variance σ. Based on available observations,
GP predicts a new function value y(x) at some new design
point x. If y(x) is a continuous function and xi and xj are
highly correlated, y(xi) and y(xj) should be close. In this
work, the Gaussian correlation function stated in (1) describes
the correlation between two variables.

Corr(xi, xj) = exp(−
∑d
l=1 θl|xli − xlj |pl)

θl > 0, 1 ≤ pl ≤ 2
(1)

where d is the dimension of x and θl is the correlation param-
eter which determines the extent of correlation reduction when
xli moves in the l direction. The smoothness of the function
is related to pl with respect to xl. The hyper-parameters θl
and pl are determined by maximizing the likelihood function
in (2).

1

(2πσ2)n/2
√
det(R)

exp

[
− (y − µI)TR−1(y − µI)

2σ2

]
(2)

where R is a n×n matrix and I is a n×1 vector having all its
elements as unity. By maximizing the likelihood function that
y = yi at x = xi(i = 1, . . . , n) and handling the prediction
uncertainty based on the best linear unbiased prediction, the
function value y(x∗) at a new point x∗ can be predicted as:

ŷ(x∗) = µ+ rTR−1(y − Iµ) (3)

where

Ri,j = Corr(xi, xj), i, j = 1, 2, . . . , n
r = [Corr(x∗, x1), Corr(x∗, x2), . . . , Corr(x∗, xn)]
µ̂ = (ITR−1y)(ITR−1I)−1

(4)

For the surrogate model, the mean square error value of the
prediction uncertainty is stated in (5).

ŝ2(x∗) = σ̂2[I−rTR−1r+(I−rTR−1r)2(ITR−1I)−1] (5)

where
σ̂2 = (y − Iµ̂)TR−1(y − Iµ̂)n−1 (6)

The computational complexity of GP modeling is
O(NitK

3d) [25], where Nit is the number of iterations spent
in hyper-parameter optimization and K is the number of
training data points. The most critical factor is K, which
is affected by d in order to construct a reliable surrogate
model. Considering the dimensionality of the targeted problem
(Section III (A)), the GP modeling time is often short.

To evaluate the quality of a candidate design in terms of
the predicted value in (3) and the prediction uncertainty in
(5), several prescreening methods can be used. The lower
confidence bound (LCB) method [25] is adopted in PSAED.
If the objective function y(x) has a predictive distribution of
N(ŷ(x), ŝ2(x)), an LCB prescreening of y(x) can be defined
as follows:

ylcb(x) = ŷ(x)− ωŝ(x)
ω ∈ [0, 3]

(7)
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where ω is a constant, which is often set to 2 to ensure
a balance between exploration and exploitation [25]. In this
work, the GP modeling is implemented using the ooDACE
toolbox [26].

B. The DE Algorithm

The DE algorithm [4] is adopted as the search engine in
PSAED, which works as follows:

Let P be a population composed of a number of individual
solutions x = (x1, . . . , xd) ∈ Rd. To create a child solution
u = (u1, . . . , ud) for x, firstly, mutation occurs to produce a
donor vector:

vi = xr1 + F · (xr2 − xr3) (8)

where xr1 , xr2 and xr3 are three mutually exclusive solutions
randomly selected from P ; vi is the ith mutant vector; F ∈
(0, 2] is a control parameter, often called the scaling factor.
The mutation strategy in (8) is called DE/rand/1.

The crossover operator is then applied to produce the child
solution u:

1 Randomly select a variable index jrand ∈ {1, . . . , d},
2 For each j = 1 to d, generate a uniformly distributed

random number rand from (0, 1) and set:

uj =

{
vj , if (rand ≤ CR)|j = jrand
xj , otherwise (9)

where CR ∈ [0, 1] is a constant called the crossover rate.

In this study, four other popular DE mutation strategies
stated in (10) to (13) are involved:

(1) mutation strategy: DE/best/1

vi = xbest + F · (xr1 − xr2) (10)

where xbest is the best candidate solution in the current
population P .

(2) mutation strategy: DE/current-to-best/1

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (11)

where xi is the ith vector in the current population.
(3) mutation strategy: DE/best/2

vi = xbest + F · (xr2 − xr3) + F · (xr4 − xr5) (12)

where xr4 and xr5 are two different solutions randomly
selected from P and are different from xr1 , xr2 and xr3 .

(4) mutation strategy: DE/rand/2

vi = xr1 + F · (xr2 − xr3) + F · (xr4 − xr5) (13)

(8), (10), (11), (12) and (13) are arguably the most widely
used DE mutation strategies.

C. The SMAS Framework

There are several versions of the SMAS framework (e.g.,
[17], [19], [18]). The following version is used because it
shows the overall best performance for various kinds of EM
devices, circuits and machines.

Step 1: Sample α (often a small number) solutions from
the design space [a, b]d (a and b are the lower and
upper bounds of the design variables, respectively;
d is the number of design variables) using the Latin
Hypercube sampling method [27]. Evaluate the real
function values of all these solutions and let them
form the initial database.

Step 2: If a preset stopping criterion is met, output the best
solution from the database; otherwise go to Step 3.

Step 3: Select the λ best solutions from the database to
form a population P .

Step 4: Apply the DE/current-to-best/1 operator (11) to P
to create λ new child solutions.

Step 5: For each child solution, select τ nearest samples
(based on Euclidean distance) as the training data
points and construct a local GP surrogate model.
Prescreen the child solutions generated in Step 4
using the LCB method in Section II (A).

Step 6: Evaluate the real function value of the estimated
best child solution from Step 5. Add this evalu-
ated solution and its objective function value to the
database. Go back to Step 2.

There are defined parameter setting rules for SMAS. When
following the rules, SMAS shows high robustness for various
kinds of problems [18], [20]. Compared to SAEAs using a
standard EA structure, the key advantage of SMAS is the
improved locations of training data points. With the same
number of training data points, it is intuitive that using training
data points located near to the points waiting to be predicted
(child population) can obtain better surrogate models and
prediction results.

In SMAS, the λ current best candidate solutions form the
parent population (it is reasonable to assume that the search
focuses on the promising region) and the best candidate based
on prescreening in the child population is selected to replace
the worst one in the parent population. Hence, only at most
one candidate solution is changed in the parent population in
each iteration. Thus, the best candidate in the child solutions
in several consecutive iterations may be quite near to each
other (they will then be simulated and are used as training
data points). Therefore, the training data points describing
the current promising region can be much denser compared
to those generated by a standard EA population updating
mechanism, which may spread in different regions of the
design space. The latter may lead to insufficient training data
points around the candidate solutions to be prescreened [18],
[28].

III. THE PSAED METHOD

A. Landscape Characteristics of EM Design Problems

Because real-world EM design problems are computation-
ally expensive, they are not fit for a behavioral study that
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requires a number of runs. Thus, mathematical benchmark
problems which have similar landscape characteristics are
selected. Size and complexity are two main aspects to be
considered in selection. The number of design variables is
often below 10 for electromagnetic machines [29], [21], below
or around 10 for microwave antennas, filters and other devices
[30], [24] and 10 to 30 for circuits [19], [31]. Scalability
is an advantage of the SMAS framework and its capacity
to handle 30-dimensional complex problems is shown in
[20]. To cover most EM design problems, 10-dimensional
mathematical benchmark problems are used.

Selecting mathematical benchmark problems with appro-
priate complexity is essential. Much EA research assumes a
sufficient number of function evaluations, and very complex
landscapes are used to challenge the search algorithms. How-
ever, in surrogate-based optimization research, different sur-
rogate model management methods have different trade-offs
between the complexity of the landscape that it can handle and
the efficiency. It is clear that, to handle complex landscapes,
more training data points are needed so as to obtain reliable
surrogate models, which decreases the efficiency.

The landscapes of electromagnetic machines (e.g., EM
actuators) are often not complex and (multi-start) local op-
timization works well in many cases [32], [33]. Antenna and
microwave device and circuit landscapes are shown to be
multimodal [1], [34]. However, very rugged landscapes (e.g.,
the Rastrigin function [35]), which tend to be discontinuous
rarely appear. This is because EM simulations are, in fact,
solving Maxwell’s equations and such a landscape is not
typically generated by partial differential equations. Based
on this, we use the Ellipsoid function (14) [36] to represent
simple landscapes and the Ackley function (15) [36] to repre-
sent multimodal landscapes. The reason to select the Ackley
function is that the more complex the landscape, the more
speed improvement SMAS (or most SAEAs) has compared to
standard EAs [14]. To the best of our knowledge, the speed
improvement of SMAS is often lower when using real-world
problems than using the Ackley function.

F (x) =
∑d
i=1 ix

2
i

x ∈ [−20, 20], i = 1, . . . , 10
(14)

F (x) = −20e−0.2
√

1
d

∑d
i=1 x

2
i − e 1

d

∑d
i=1 cos(2πxi) + 20+e

x ∈ [−32, 32], i = 1, . . . , 10
(15)

B. Behavioral Analysis of DE Mutation Strategies under the
SMAS Framework

Although behaviors of the five standard DE mutation strate-
gies are generally known, they have not been well studied
under the SMAS framework, which is essential for designing
PSAED. 30 independent runs are carried out with the setting of
α = 5×d, λ = 50, τ = 8×d, F = 0.8 and CR = 0.8, which
is in line with the SMAS parameter setting rules [18], [14].
The computing budget is 1,000 function evaluations in each
run. The Hopkins test [37] result (average of H-measure) is
shown in Fig. 1. The H-measure shows the clustering tendency

of the optimization process: 1 indicates full convergence and
0.5 indicates regularly spaced points. The setting of H-measure
computation follows [38].
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Figure 1. H-measure of the five DE mutation strategies for the Ellipsoid and
Ackley functions (SMAS framework)

It can be seen that under the SMAS framework: (1) The
rank of convergence speed (from high to low) is DE/best/1,
DE/current-to-best/1, DE/best/2, DE/rand/1, DE/rand/2. (2)
The convergence speed varies a lot and forms two distinct
clusters. The first three strategies are several times faster
than the last two strategies. In particular, 1000 evaluations
are not enough for the second cluster to converge for the
Ellipsoid function. (3) In the first cluster (i.e., fast convergence
cluster), the convergence speed is similar. In the second cluster
(i.e., slow convergence cluster), a non-negligible difference is
shown.

In terms of solution quality, the box plots are shown in
Fig. 2. It can be seen that: (1) For the Ellipsoid function, all
mutation strategies (tend to) converge to the global optimal
point. Note that the outliers of the DE/rand/1 and DE/rand/2
are not the result of being trapped at local optima (the Ellipsoid
function is unimodal), but because of the insufficient number
of function evaluations. (2) For the Ackley function, under the
SMAS framework, some of the runs of DE/best/1, DE/current-
to-best/1, DE/best/2 are trapped at local optima, although the
average and median values are reasonably good (Table I).
Note that such a result is often considered as a success in
computational intelligence research, but greater robustness is
highly desirable in real-world engineering optimization. In
contrast, DE/rand/1 and DE/rand/2 are seldom trapped at local
optima especially when using DE/rand/2.

Therefore, behavioral study shows that, under the SMAS
framework, there is no winning DE mutation strategy which
has good enough exploration ability, while at the same time
being among the efficient strategies for the targeted EM
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Figure 2. Box plots of five DE mutation strategies for the Ellipsoid and
Ackley functions (SMAS framework)

Table I
STATISTICS OF THE BEST OBJECTIVE FUNCTION VALUES USING

DIFFERENT DE MUTATION STRATEGIES (ACKLEY FUNCTION) (OVER 30
RUNS)

Strategy Best Worst Mean Median Std.
DE/best/1 1.15e-04 15.1476 1.2841 3.85e-04 3.6391
DE/rand/1 9.71e-04 1.7569 0.1900 0.0082 0.4597

DE/c-to-b/1 2.44e-04 12.8622 1.8521 0.5915 3.5976
DE/best/2 1.53e-06 17.8114 1.1835 8.87e-04 3.7676
DE/rand/2 0.0064 0.1277 0.0487 0.0348 0.0344

design problems. Therefore, two natural questions are: (1) Is it
possible to employ multiple mutation strategies to combine the
advantages and remedy the shortcomings? (2) Can employing
multiple mutation strategies be in line with the parallel com-
puting environment? These questions will be answered in the
next subsection.

C. The PSAED Method

1) Challenges for introducing parallel simulations in
SMAS: As mentioned above, the SMAS framework is sequen-
tial. A quick attempt at implementing the SMAS framework
in a parallel computing environment is to simulate the top k
(instead of the top 1) candidate designs in Step 6 (Section II
(C)) parallelly in each iteration. In a similar fashion to simulate
k candidates in parallel in standard EAs, a reduction of k times
computing overhead should be observed if this approach is
effective. However, using this method for the 10-dimensional
Ackley function shows a 2.1 times speed improvement for
k = 4 (Fig. 3).

 

Figure 3. Comparison of convergence trends (DE/current-to-best/1, Ackley
function, average of 30 runs)

By observing the generated candidate solutions in the op-
timization process, it can be found that: (1) The predicted
best candidates in most iterations are often the truly best ones
with very few other candidates having similar optimality. (2)
The best candidate may remain unchanged over a consecutive
number of iterations (usually, 10 - 30). Therefore, some of the
k candidates that are simulated in each iteration are suboptimal
solutions when k = 4. Simulating suboptimal solutions can
neither directly improve the result nor improve the present
surrogate model in the optimal region. This implies that
generating more diverse and high-quality candidate solutions
can help the parallelization of the SMAS framework. Using
multiple DE mutation strategies can possibly support this
objective.

2) Using multiple mutation strategies: Under the SMAS
framework, for the Ackley function, the average and median
values when using the DE/best/1 mutation strategy are rea-
sonably acceptable (Table I). However, a few outliers show
poor results. Hence, an initial idea is to moderately improve
the exploration ability of DE/best/1 to reduce the outliers
while keeping the convergence speed. According to Fig.
2(b), the DE/current-to-best/1 strategy shows the least outliers
among the fast convergence cluster. Hence, the combination
of DE/best/1 and DE/current-to-best/1 is investigated first. The
following method is used.

Step 1: Implement Steps 1 to 3 of the SMAS framework
(Section II (C)).

Step 2: Set the rates of using DE/best/1 and DE/current-to-
best/1, R̂1 and R̂2, respectively.

Step 3: Use roulette wheel selection [39] based on the
given rates to determine a DE mutation strategy.
Generate λ child solutions using the selected strategy
to construct a child population. Repeat the above
process to construct the other child population.

Step 4: Implement Step 5 of the SMAS framework.
Step 5: Evaluate the real function value of the estimated

best child solution from each population. Add the
evaluated solutions and their objective function val-
ues to the database. Start the next iteration.

Three kinds of combinations are (1) R̂1 = 0.5 and R̂2 = 0.5,
(2) R̂1 = 1 and R̂2 = 0, and (3) R̂1 = 0 and R̂2 = 1. The
number of independent runs and parameter settings are the
same as Section III (B). The computing budget is 500 and
300 parallel function evaluations, respectively, to make both
problems converge. For convergence, we mean that the current
best candidate solution shows very minor improvement in 50
consecutive iterations.

The efficiency of the three mutation strategies in the fast
convergence cluster is very similar (Fig. 1). Hence, the con-
vergence speed of the three kinds of combinations is almost
the same, which is verified by H-measure analysis. In terms
of solution quality, the box plots are shown in Fig. 4. Table II
and Table III show the statistics.

The following observations can be made: (1) Combinations
of strategies show significant improvements compared to using
a single strategy in Section III (B), even for a combination
of the same strategy. (2) The combination of 50% DE/best/1
and 50% DE/current-to-best/1 shows the largest improvement
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(a) Ellipsoid Function
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Figure 4. Box plots of the combinations of DE/best/1 and DE/current-to-
best/1 for the Ellipsoid and Ackley functions

Table II
STATISTICS OF THE BEST OBJECTIVE FUNCTION VALUES USING

COMBINATIONS OF DE/BEST/1 AND DE/CURRENT-TO-BEST/1 AT
DIFFERENT RATES (ELLIPSOID FUNCTION) (OVER 30 RUNS)

Combination Best Worst Mean Median Std.
DE/best/1
(50%)
DE/c-to-b/1
(50%)

3.72e-07 5.96e-05 8.39e-06 2.02e-06 1.45e-05

DE/best/1
(100%) 2e-06 4.85e-04 7.6e-05 3.04e-05 1.03e-04
DE/c-to-b/1
(100%) 1.21e-06 1.62e-04 2.82e-05 1.31e-05 3.85e-05

compared with alternatives. It is clear that the outliers are
significantly reduced. These two observations are understand-
able because the two mutation strategies produce diverse
optimal solutions compared to only using a single strategy.
They compensate each other for improvements in both the
objective function value and the surrogate model quality. When
combining the same strategy, more diverse candidate solutions
are also generated because xr1 and xr2 are randomly selected,
although the strength is not as good as the combination of
DE/best/1 and DE/current-to-best/1.

Based on this observation, a natural question is to investigate
the performance when introducing a mutation strategy with

Table III
STATISTICS OF THE BEST OBJECTIVE FUNCTION VALUES USING

COMBINATIONS OF DE/BEST/1 AND DE/CURRENT-TO-BEST/1 AT
DIFFERENT RATES (ACKLEY FUNCTION) (OVER 30 RUNS)

Combination Best Worst Mean Median Std.
DE/best/1
(50%)
DE/c-to-b/1
(50%)

2.1e-04 1.6462 0.0567 7.6287e-04 0.3002

DE/best/1
(100%) 1.67e-04 7.9485 0.3813 7.11e-04 1.4718
DE/c-to-b/1
(100%) 0.0034 15.5186 1.4293 0.0135 3.5270

higher exploration ability (the slow convergence cluster in
Section III (B)). Will the overall exploration ability be further
improved? Will the efficiency be largely decreased?

Although DE/rand/1 and DE/rand/2 are several times slower
than the mutation strategies in the fast convergence cluster
under the standard SMAS framework, it may not necessarily
slow down the convergence when introducing them into the
combination. According to the trade-off between the explo-
ration ability and the probability of finding the correct search
direction [40], many of the candidate solutions generated by
slow convergence strategies are not in the correct directions
in standard SMAS. However, when using the foundation
constructed by DE/best/1 and DE/current-to-best/1, most of
the candidate solutions are near the optimal region. Hence,
many candidate solutions generated by the slow convergence
cluster can be considered as exploring the optimal region
instead of the whole space. When the landscape is simple,
the exploration of the optimal region largely improves the
surrogate model, which, in contrast, has the possibility to im-
prove the efficiency. For complex landscapes, the exploration
ability of the slow convergence cluster can also contribute to
the overall exploration ability without considerably slowing
down the convergence.

To verify the above assumption and decide the appropriate
strategy between DE/rand/1 and DE/rand/2, the following
experiments are carried out. It is not easy to predefine the
rate of using different mutation strategies, which is problem
dependent: the following self-adaptive framework is, therefore,
proposed.

For EACH child population i = 1, 2, . . . , n:
Step 1: If the algorithm is within the learning period (the

current number of iterations is smaller than a thresh-
old L), the rates of using DE/best/1 (10), DE/current-
to-best/1 (11) and DE/rand/1 (8) or DE/rand/2 (13)
are equal, that is R̂1 = R̂2 = R̂3 = 100

3 %.
Otherwise; use the rates in Step 5.

Step 2: Use roulette wheel selection [39] based on the rates
to determine a DE mutation strategy and generate a
child population (Ci) having λ child solutions.

Step 3: Use the local GP surrogate models in Step 5 of the
SMAS framework (Section II (C)) to predict all the
candidate designs in Ci.

Step 4: Compare the predicted value of each solution in
Ci and the current best solution (simulated value)
of all populations. Add the number of solutions that
are better than the current best solution to Ns (the
number of successes of DE/best/1 (10), DE/current-
to-best/1 (11) and DE/rand/1 (8) or DE/rand/2 (13))
and add λ to Nu (the number of uses of these
mutation strategies).

End the loop
Step 5: Update the rates of using DE/best/1 (10),

DE/current-to-best/1 (11) and DE/rand/1 (8) or
DE/rand/2 (13) by Ns/Nu. Update the number of
iterations.

Step 4 is essential in this self-adaptive method. If the
predicted objective function value of a candidate solution
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   (a) Ellipsoid Function

 

 

 

 

 

 

 

 

(b) Ackley Function

Figure 5. H-measure of the combinations of DE/best/1, DE/current-to-best/1
and DE/rand/1 or DE/rand/2 for the Ellipsoid and Ackley functions

 

 

 

  

(a) Ellipsoid Function

 

 

 

 

 

 

(b) Ackley Function

Figure 6. Box plots of the combinations of DE/best/1, DE/current-to-best/1
and DE/rand/1 or DE/rand/2 for the Ellipsoid and Ackley functions

generated by a certain DE mutation strategy is better than
the best-so-far simulated objective function value, we assume
that it is a successful case of the corresponding DE mutation
strategy. The success rates then decide the probability of using
different DE mutation strategies in future iterations.

30 independent runs are used and the result is shown in
Fig. 5 and Fig. 6. It can be seen that the assumption is
verified and DE/rand/2 is more appropriate than DE/rand/1. In
particular, the efficiency of optimizing the Ellipsoid function
is, in contrast, improved when including the slow convergence
cluster. All the outliers are removed when using DE/best/1,
DE/current-to-best/1 and DE/rand/2 mutation strategies.

Output

LCB Prescreening, 
Select n estimated 

top candidates

Parallel simulations, 
Update database

Sample the design 
space (LHS Method)

Stopping criteria?

Select the λ best 
designs

Self-adaptive child 
solutions generation  

Select training data,
Local GP modeling

No

Yes

 

Figure 7. The flow diagram of PSAED

3) The PSAED framework: Based on the above, the flow
diagram of PSAED is shown in Fig. 7. Assuming n candidate
designs can be simulated in parallel, PSAED works as follows.

Step 1: Use the Latin Hypercube sampling method [27] to
sample α (often small) designs from the design space
and simulate them to constitute the initial database.

Step 2: If a preset stopping criterion such as the maximum
number of simulations is met, output the best design
from the database; otherwise go to Step 3.

Step 3: Select the λ best designs from the database to form
a population P .

Step 4: Apply the self-adaptive DE/best/1, DE/current-
to-best/1 and DE/rand/2-based search (Section III
(C)(2)) on P to create n child populations (each
population has λ child solutions).

Step 5: For each candidate design in each population,
construct a local GP surrogate model using the τ
nearest designs (based on Euclidean distance) from
the database and their performance values as the
training data points. (There are n × λ GP models
in total.)

Step 6: Prescreen the n × λ child solutions generated in
Step 4 using the GP models in Step 5 and the LCB
method (7). Select the top n child solutions based on
the LCB values.

Step 7: Simulate the estimated top n child solutions from
Step 6 in parallel. Add them and their performance
(via simulation) to the database. Go back to Step 2.

In terms of parameter settings, PSAED introduces only
one new parameter L (learning period) compared to SMAS.
Clearly, this parameter is not sensitive. For simplicity, it is
set to 50 for all the problems. The parameter setting rules of
SMAS [17], [18], [19] are still useful. In all the test cases, the
following parameters are used: α = 5×d, λ = 50, τ = 8×d,
F = 0.8, CR = 0.8.
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IV. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, two real-world examples, including a 7-
variable magnetically actuated micromirror and a 7-variable
hybrid dielectric resonator antenna (DRA), as well as four
mathematical benchmark problems, which are 6−d Hartmann
(22), 10 − d Ackley (15), Ellipsoid (14) and Michalewics
functions (23) [36], are used to demonstrate the PSAED
method. The reference methods are parallel SMAS, parallel
DE [4] and parallel PSO [5]. For all problems, we assume 3
candidate solutions can be simulated in parallel. Parallelizing
DE and PSO is straightforward. For SMAS, the top 3 candidate
solutions in each iteration are simulated in parallel.

The parameter setting of PSAED is described in the last
section. The parameters for parallel SMAS and DE are the
same as those used in PSAED for a fair comparison. Regarding
parallel PSO, the swarm size is set to 50, which is the same
as other reference methods. For other PSO parameters, MAT-
LAB’s default setting is used (cognitive and social parameters
of 1.49 each, adaptive inertia weight with a boundary of
[0.1, 1.1] and a minimum adaptive neighborhood size of 0.25).
All the tests are run on a workstation with Intel 4-core i7 CPU
and 24GB RAM and the time consumption is wall clock time.

A. Example 1

The first example is a magnetically actuated micromirror [2]
with a layout shown in Fig. 8. The micromirror is analyzed
by the finite element method. The finite element model of
the micromirror has a depth (w) of 10µm, residual induction
of the magnet of 1.04T , and relative magnetic permeability
of 103 and 1.1 for the plate and magnet, respectively. The
magnetic vector potential (Ā) and magnetic induction (B̄) field
are evaluated using (16) and (17), respectively.

∇̄2Ā = −µmJ̄ − ∇̄ × B̄o (16)

where J̄ is the coil current, µ is the magnetic permeability
and B̄o is the magnetic remanence of the permanent magnet.

B̄ = ∇̄ × Ā (17)

From (16) and (17), a typical finite-element mesh is com-
posed of 100,000 triangles; second-order Lagrangian elements
are considered. The torque is then computed based on the
virtual work principle as follows:

T (X,ϕ) =
∂W ′

∂ϕ

∣∣∣∣
ϕ=30◦

(18)

where W ′ is the co-energy calculated as:

W ′ =
1

2

∫
Ω

B2

µ
dΩ (19)

The micromirror is modeled in MagNet and the time of each
simulation varies (typically 2-10 minutes). Given the vector
X of the design variables, the design exploration goal is to
maximize the actuation torque (T ) for a mirror position (ϕ)
of 30◦:

maximize
X

T (X,ϕ) with (ϕ = 30◦) (20)

Table IV
RANGES OF THE DESIGN VARIABLES (ALL SIZES IN µm) FOR

MICROMIRROR DESIGN EXPLORATION

V ariables X1 X2 X3 X4 X5 X6

Lower bound 50 1000 25 25 100 300
Upper bound 150 2000 75 75 300 900

Table V
STATISTICS OF THE BEST OBJECTIVE FUNCTION VALUES USING

DIFFERENT METHODS (EXAMPLE 1, IN nNm)

Method Best Worst Mean Median Std.
PSAED 1.015 1.015 1.015 1.015 1.9e-6

Parallel SMAS 0.966 0.866 0.922 0.928 0.031
Parallel DE 0.847 0.766 0.812 0.822 0.0414

Parallel PSO 0.977 0.877 0.913 0.883 0.0564

The parameters that can be adjusted include the magnet
height (X1), the magnet length (X2), the magnet air-gap (X3),
the conductor height (X4), the conductor length (X5) and
the conductor air-gap (X6) at a fixed pulsed current density
of 5Amm−2. Their ranges are shown in Table IV. To make
all methods converge, the computing budget is as follows:
250 parallel simulations for PSAED and SMAS, respectively,
and 1250 parallel simulations for DE and PSO, respectively.
10 independent runs are carried out for PSAED and SMAS,
respectively, while 3 independent runs are carried out for
parallel DE and PSO, respectively, because more runs are not
affordable.



y

xx4
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x1

x7 x7

x6/2 x5
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Figure 8. Layout of the magnetically actuated micromirror.

Optimization results are shown in Table V. A typical re-
sponse for PSAED is shown in Fig. 9 with the obtained optimal
design of X1 = 15µm,X2 = 1086µm,X3 = 28.3µm,X4 =
30.5µm,X5 = 162µm,X6 = 484µm. The optimization time
is about 25 hours. It can be seen that PSAED obtains very
satisfactory results. Moreover, in all 10 runs, it finds almost the
same optimal design, which is better than all designs that the
reference methods find. Hence, a clear advantage over parallel
SMAS, parallel DE and parallel PSO is shown in terms of
design solution quality.

In terms of efficiency, PSAED uses around 168 parallel
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Figure 9. A typical magnetic field map of the optimized micromirror by
PSAED

 

Figure 10. Convergence trends of PSAED (10 runs), parallel SMAS (10 runs),
parallel DE (3 runs) and parallel PSO (3 runs) for example 1.

EM simulations on average. The convergence trends of all
methods are shown in Fig. 10. It can be seen that to obtain
the average best objective function value of parallel SMAS
(0.922nNm, 249 parallel EM simulations, 39 hours), PSAED
needs 35 parallel EM simulations (5.3 hours). Hence, PSAED
offers a 7.36 times speed improvement over parallel SMAS.
To obtain the average best objective function values of parallel
DE (0.812nNm, 987 parallel EM simulations, 6.1 days) and
parallel PSO (0.913pNm, 1214 parallel EM simulations, 7.4
days), PSAED needs 17 and 29 parallel EM simulations
(2.5 hours and 4.4 hours), respectively. Hence, PSAED offers
a 58.6 times speed improvement over parallel DE and a
40.4 times speed improvement over parallel PSO. Therefore,
PSAED shows clear advantages compared to the reference
methods in terms of efficiency and optimization capacity for
this example.

B. Example 2

The second example is a hybrid DRA [41] with a layout
shown in Fig. 11. The hybrid DRA is modeled in CST
Microwave Studio and excited at TEδ11 mode via a slot in the
ground plane. The hybrid DRA has a mesh density of 12 cells
per wavelength and about 22,000 mesh cells in total. Each EM
simulation costs about 30s. A moderate fidelity is used here
for comparison and, in real-world design, the fidelity should
be higher and each EM simulation could cost 5-10 minutes.
The relative permittivity and loss tangent of the dielectric
resonator (DR) are 10 and 0.0001, respectively. The substrate
is RO4003C with a thickness of 0.5mm, relative permittivity
of 3.38 and loss tangent of 0.0027. The substrate is placed on
a copper ground of 0.05mm thickness.

As shown in (21), the design exploration goal is to minimize
the maximum of reflection coefficients (max(|S11)|) in the

Table VI
RANGES OF THE DESIGN VARIABLES (ALL SIZES IN MM) FOR HYBRID

DRA DESIGN EXPLORATION

V ariables ax ay az ac us ws ys
Lower bound 6 12 6 6 0.5 4 2
Upper bound 10 16 10 8 4 12 12

operational band of 5.28GHz to 5.72GHz. The parameters that
can be adjusted include the dimensions of the DR brick (ax,
ay and az), the slot dimensions (us and ws), the length of
the microstrip slab (ys) and location of the DR relative to the
slot (ac). Their ranges are shown in Table VI. A geometric
constraint of (ac ≤ 0.5 × ay) is used to ensure that the slot
remains under the DRA in all possible cases.

For antenna design problems, designs with max(|S11)| ≤
−20dB within the bandwidth show excellent response and
the smaller the better. The computing budget is as follows:
370 parallel simulations for PSAED and SMAS, respectively,
and 2000 parallel simulations for DE and PSO, respectively.
10 independent runs are carried out for PSAED and SMAS,
respectively, while 3 independent runs are carried out for
parallel DE and PSO, respectively, because more runs are not
affordable.

minimize max|S11| 5.28GHz − 5.72GHz (21)

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Layout of the hybrid DRA

 

Figure 12. A typical optimized performance of the hybrid DRA by PSAED

Optimization results are shown in Table VII. A typical
response of PSAED is shown in Fig. 12 with the obtained
optimal design of ax = 6.80mm, ay = 15.00mm, az =
9.97mm, ac = 5.02mm,us = 3.68mm,ws = 7.72mm, ys =
2.13mm. The optimization time is about 5 hours. The fol-
lowing observations can be made: (1) In all 10 runs, PSAED
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Table VII
STATISTICS OF THE BEST OBJECTIVE FUNCTION VALUES USING

DIFFERENT METHODS (EXAMPLE 2, IN DB)

Method Best Worst Mean Median Std.
PSAED -26.03 -23.99 -24.58 -24.32 0.6865

Parallel SMAS -24.03 -21.62 -23.52 -23.65 0.8957
Parallel DE -25.03 -23.15 -24.31 -24.73 1.0116

Parallel PSO -22.58 -19.05 -21.34 -22.40 1.9891

obtains very satisfactory results even in the worst case. (2)
PSAED reveals good robustness as the standard deviation is
low. (3) PSAED shows a small advantage over parallel DE,
and a clear advantage over parallel SMAS and parallel PSO
in terms of design solution quality.

 

Figure 13. Convergence trends of PSAED (10 runs), parallel SMAS (10 runs),
parallel DE (3 runs) and parallel PSO (3 runs) for example 2.

In terms of efficiency, PSAED uses around 360 parallel
EM simulations on average. The convergence trends of all
methods are shown in Fig. 13. It can be seen that to obtain
the average best objective function values of parallel SMAS (-
23.52dB with 364 parallel EM simulations, 5.3 hours), PSAED
needs 276 EM simulations (3.9 hours). Hence, PSAED offers
1.4 times speed improvement over parallel SMAS. To obtain
the average best objective function values of parallel DE (-
24.31dB with 1928 parallel EM simulations, 26.8 hours) and
parallel PSO (-21.34dB with 1581 parallel EM simulations, 23
hours), PSAED needs 346 and 178 parallel EM simulations
(4.9 hours and 2.4 hours), respectively. Hence, PSAED offers
a 5.5 times speed improvement over parallel DE, and 9.6 times
over parallel PSO. Therefore, PSAED shows clear advantages
compared to other alternatives in terms of both efficiency and
optimization capacity for this example.

C. Benchmark Problem Tests

In this subsection, the performance of PSAED is demon-
strated using the four mathematical benchmark problems with
different landscape complexity [36], [42] listed in Table VIII.
More details can be found in the appendix. To make all of the
functions converge, the computing budget is 100, 300, 250
and 300 exact function evaluations, respectively, for PSAED
and parallel SMAS. The computing budget of parallel DE
and parallel PSO is 1500 parallel evaluations on F1 - F4,
respectively. A Wilcoxon test [43] is carried out using the
final optimal function values obtained by all methods (over
30 independent runs) as data samples. The null hypothesis is
that the data samples of PSAED and the reference methods
have equal medians at 5% significance level (95% confidence

Table VIII
MATHEMATICAL BENCHMARK PROBLEMS

Problem Objective
Function

No. of
Variables

Global
Optimum Property

F1 Hartmann 6 -3.32237 Multimodal;
6 local minima

F2 Ellipsoid 10 0 Unimodal

F3 Ackley 10 0 Multimodal;
Many local minima

F4 Michalewiz 10 -9.66015

Multimodal;
10! local minima;

Many steeped ridges;
Many valleys

Table IX
STATISTICS OF THE BEST OBJECTIVE FUNCTION VALUES OBTAINED BY

PSAED FOR F1 - F4 (OVER 30 RUNS)

Problem Best Worst Mean Median Std.
F1 -3.3224 -3.2032 -3.2945 -3.3224 0.0513
F2 1.04e-10 3.27e-08 7.16e-09 5.11e-09 8.52e-09
F3 3.65e-04 0.0051 0.0015 0.0012 0.0012
F4 -9.3345 -8.2029 -8.8467 -8.8878 0.2724

Table X
STATISTICS OF THE BEST OBJECTIVE FUNCTION VALUES OBTAINED BY

PARALLEL SMAS FOR F1 - F4 (OVER 30 RUNS)

Problem Best Worst Mean Median Std. p-value
F1 -3.3223 -3.2029 -3.2824 -3.3220 0.0571 1.25e-05
F2 1.83e-05 9.00e-04 1.35e-04 6.57e-05 1.87e-04 3.02e-11
F3 0.0053 0.1696 0.0246 0.0151 0.0314 3.01e-11
F4 -9.3806 -7.0683 -8.3314 -8.3600 0.6791 0.0030

Table XI
STATISTICS OF THE BEST OBJECTIVE FUNCTION VALUES OBTAINED BY

PARALLEL DE FOR F1 - F4 (OVER 30 RUNS)

Problem Best Worst Mean Median Std. p-value
F1 -3.3224 -3.2032 -3.2906 -3.3224 0.0536 9.21e-05
F2 0.0910 1.2499 0.3984 0.3348 0.2929 3.02e-11
F3 0.3990 1.3489 0.8160 0.8000 0.2404 3.01e-11
F4 -6.8819 -5.3480 -6.1510 -6.1458 0.3905 3.02e-11

Table XII
STATISTICS OF THE BEST OBJECTIVE FUNCTION VALUES OBTAINED BY

PARALLEL PSO FOR F1 - F4 (OVER 30 RUNS)

Problem Best Worst Mean Median Std. p-value
F1 -3.3224 -3.2032 -3.2508 -3.2032 0.0594 0.5997
F2 9.24e-05 0.1612 0.0107 0.0018 0.0323 3.02e-11
F3 0.0017 1.6540 0.1229 0.0149 0.3596 9.89e-11
F4 -9.3639 -4.7407 -8.0584 -8.3207 1.0646 1.49e-04
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Table XIII
SPEED ENHANCEMENT OF PSAED OVER OTHER METHODS FOR F1 - F4

(OVER 30 RUNS)

Method F1 F2 F3 F4
Parallel SMAS 1.67 1.49 1.31 2.01

Parallel DE 17.9 11.77 9.20 23.58
Parallel PSO 19.54 7.84 11.11 11.83

level). The statistics (over 30 runs) are shown in Table IX,
Table X, Table XI and Table XII.

In terms of solution quality, the following observations can
be made: (1) PSAED shows excellent solution quality for F1-
F3, for which the average and median values of the best
function values over 30 runs are very close to the global
optimum. Even for F4, which is more complex than the
targeted EM design problems, the optimal result obtained
by PSAED is still reasonably acceptable. (2) According to
the p-values in Table X, Table XI and Table XII, the null
hypothesis is rejected for all the cases except parallel PSO
for F1. Hence, PSAED obtains statistically better optimization
quality compared to the reference methods.

 

 

 

 

Figure 14. Convergence trends of all methods for F1.

 
Figure 15. Convergence trends of all methods for F2.

 

Figure 16. Convergence trends of all methods for F3.

In terms of efficiency, the convergence trends of all methods
are shown in Fig. 14, Fig. 15, Fig. 16 and Fig. 17. To calculate
the speed enhancement of PSAED with respect to the reference
methods, the average convergence trends of all the methods are
used. As in Example 1 and Example 2, the number of parallel
evaluations used by PSAED to obtain the best values of the
reference methods is divided by the number of evaluations

 

 

 

 

 

   

 

 

Figure 17. Convergence trends of all methods for F4.

used by the reference methods to obtain the same values. Table
XIII shows this result. It can be seen that PSAED obtains
from several times to up to about 20 times speed enhancement
compared to parallel SMAS, parallel DE and parallel PSO.

V. CONCLUSIONS

In this paper, the PSAED method has been proposed for
efficient electromagnetic design exploration in parallel simu-
lation environments, which is in line with the trend of cloud
computing for engineering design automation. Experiments
using a micromirror, a dielectric resonator antenna and four
mathematical benchmark problems show that PSAED is more
efficient than parallel SMAS (using the top candidate designs)
and much more efficient than parallel DE and parallel PSO,
while obtaining more competitive design solutions. The effi-
cacy of the PSAED can be attributed to selecting appropriate
mutation strategies for the targeted design landscape and
combining them in a particular way. Future work will include
developing PSAED-based electromagnetic design exploration
tools and investigating the performance of PSAED in higher
order parallel clusters.

APPENDIX

A. F1: 6-d Hartmann Problem

minimize Fx = −
∑4
i=1 ai × e−

∑d
i=1 Aij(xj−Pij)2

a = (1.0, 1.2, 3.0, 3.2)T

A =


10 3 17 3.50 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14


P = 10−4 ×


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


x ∈ [0, 1], i = 1, . . . , 6
minimum : x∗ = (0.20169, 0.150011, 0.476874, . . .
0.275332, 0.311652, 0.6573); f(x∗) = −3.32237

(22)

B. F4: 10-d Michalewiz Problem

minimize Fx = −
∑d
i=1 sin(xi)sin

2m(
ix2

i

π )
x ∈ [0, π], i = 1, . . . , 10
minimum : f(x∗) = −9.66015

(23)
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