
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

3-1-2005

Principles of Cost Minimisation in Wireless
Networks
Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been accepted for
inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Grout,V. (2005)’Principles of Cost Minimisation in Wireless Networks’.Journal of Heuristics, 11(2), 115 -133

http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk


Principles of Cost Minimisation in Wireless Networks

Abstract
This paper considers variations of the minimum connected vertex cover problem to be found in the study of
wireless network design. A simple, theoretic formulation is followed by a discussion of practical constraints.
Two algorithms are given and results compared.

Keywords
Minimum connected vertex cover problem, Wireless networks

Disciplines
Computer Sciences

Comments
Original publication is available at www.springerlink.com

This article is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/2

http://dx.doi.org/10.1007/s10732-005-0433-y
http://epubs.glyndwr.ac.uk/cair/2?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Heuristics,  Vol. 11,  No. 2,  March 2005, pp115-133 

Principles of Cost Minimisation in Wireless Networks 
 

 

Vic Grout 
 

Centre for Applied Internet Research (CAIR),  University of Wales, NEWI 

Plas Coch Campus, Mold Road, Wrexham, LL11 2AW, UK 

Tel: +44(0)1978 293203,  Fax: +44(0)1978 293168 

v.grout@newi.ac.uk 

 

 

ABSTRACT 

 

This paper considers variations of the minimum connected vertex cover problem to be found in 

the study of wireless network design.  A simple, theoretic formulation is followed by a 

discussion of practical constraints.  Two algorithms are given and results compared. 
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1.  INTRODUCTION 
 

The Minimum Connector Problem (MCP) for cabled networks has been understood well for 

many years and applied in a variety of situations (Du & Pardalos, 1993).  Given a number of 

nodes, or vertices, we seek to find the optimum set of edges (an edge is a link between two 

nodes) that fully connects the node set in question.  (A network is connected if a path exists 

between each pair of nodes.)  To this end, a cost matrix is applied to the nodes requiring 

interconnection with the cost element between each node pair  - i.e. the cost of that edge - 

reflecting the expenditure, distance, difficulty, etc. involved in joining the two.  Finding the 

Minimum Spanning Tree (MST) for the cost matrix will then result in the optimal solution across 

the nodes – i.e. the minimum cost set of connecting edges. 

 

A typical example is given in Figure 1.  Here, cost has been taken to be the Euclidean distance 

between node pairs and the MST minimises the total edge length in the connected solution.  It 

should be noted that the degree of each node (the number of edges in the solution adjacent to 

that node – called the valency in some texts) differs from node to node.  Terminal nodes (1, 3, 5, 

9 & 10 in Figure 1) have degree one.  A node of higher degree (2, 4, 6, 7 & 8) acts as some form 

of connector or relay between/among the two, or more, nodes to which it is connected. 

 

In certain applications it may be necessary to apply constraints to the basic MST solution, 

reflecting practical restrictions/limitations.  For example, in a traffic/load-carrying network, it 

may be necessary to limit the size of a link or relay.  Simple and efficient techniques are known 

for finding the MST or for approximating it in its constrained form (Kershenbaum, 1993).  The 

defining feature of the MCP/MST problem/solution is that the objective function is cost as given 

solely by the edge cost matrix.  That is, the optimization process seeks to minimise the total cost 
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of the edges in the solution network, whereas no consideration is given to the degree of 

each/any node in the solution. 

 

Many problems, but three in particular, have been noted in relation to this ‘distance-only’ 

approach to optimization.  Firstly, the edge costs may not be known at the start of the 

optimization process.      Secondly, a   tree   network   is   very vulnerable to failure.  Thirdly, 

the cost of providing the necessary connection at the nodes themselves, rather than merely the 

edges between them, is ignored.  The complete solution is a complex one (Grout, 1988).  This 

paper, however, as an alternative, considers a variant of the MCP in which the cost of edges 

(except in the form of constraints – see later) is irrelevant.  Instead, the cost is determined by the 

degree of the connecting nodes, reflecting the need for relay equipment to be installed at these 

vertices.  The basis for this model is the graph-theoretic minimum vertex cover problem (Garey 

& Johnson, 1979) which, defined and constrained appropriately, proves to be particularly 

applicable to wireless applications across a wide range.  The necessary concepts are introduced 

in stages, in line with increasingly demanding scenarios.  The final formulation of this Minimum 

Relay Problem (MRP) is general enough to deal with most appropriate practical applications 

(Fowler, 2001 for example).  Two approaches to the solution of the MRP are then considered 

and compared. 

 

The minimum vertex cover problem has been considered elsewhere in relation to particular 

aspects of network design and management (Luo et al., 2002, for example) and in particular to 

specialised cost functions in wireless networks (Baldi et al., 2002, for example).  However, this 

paper presents the first discussion of a generalised approach to wireless optimisation in a form 

that allows multiple constraint forms to be applied flexibly and independently or in 

combination. 

 

 

 

 

Figure 1.  Minimal Spanning Tree (F1)
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2.  THE UNCONSTRAINED MCP & MRP 
 

Variants of the MRP are introduced by comparison to the MST. 

 

2.1. Minimum Connector Problem (MCP) 
 

In the conventional MCP, a graph, G, is defined by a set of nodes (vertices), V and a set of 

edges, E.  If we can associate a cost, ce with each edge, e ∈ E, then finding the MST for G =  

(V, E) will solve the MCP for the graph, G.  Denote this problem PCon.  The result will be a tree, 

T
*
, that minimises the connection objective function, fCon, where 

 

∑∑
∈∈

===
Te

eTConT

Te

eCon cTfcTf min)(min)(
*

*                  (1) 

 

for all possible trees, T ⊆ E.  An alternative (but equivalent and initially more useful) 

formulation is to define a cost matrix, C = (cij: i,j ∈ V).  (1 ≤ i, j≤ n, where n = |V|.)  Then for  

(i, j) ∈ E, cij represents the cost of the link, (i, j).  For (i, j) ∉ E, cij = ∞.  We also define a 

Boolean link matrix, ΩT
 = (

T

ijω : i,j∈ V) as 

 





∉

∈
=

Tji

Tji
T

ij
),(:0

),(:1
ω                                                             (2) 

 

denoting whether an edge is present in any given solution, T.  The MST, T
*
,  is then found for 

the matrix, C, giving ΩT*
.  Any T, and in particular T

*
, will have n-1 edges and 

 

∑∑∑∑
−

= +=

−

= +=

===
1

1 1

1

1 1

*
min)(min)(

*
n

i

n

ij

T

ijijTConT
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n

ij

T

ijijCon cTfcTf ωω .                    (3) 

 

(Assuming C to be symmetric about the leading diagonal, the elements on and below the 

leading diagonal may be ignored.)  The two solutions, (1) and (3), will be identical. 

 

2.2. Minimum Relay Problem (MRP) 
 

In a wireless network however, if a link is viable at all, then there being no expense involved in 

cabling, assigning a cost to the equivalent edge is inappropriate.  Instead, the true cost of the 

network is derived from the cost of the relays at the connecting nodes.  In Figure 1, for example, 

the number of relays is five.  The problem may be restated accordingly. 

 

As before, define n nodes:  1, 2, ..., n by the set V.  n = |V|.  Suppose initially that an edge is 

feasible between any pair of nodes.  E = V × V, the Cartesian product of V with itself ({(i, j): i, j 

∈ V}).  Define a (connected) network, N, to be any set of edges, N ⊆ E in which (at least) one 

path exists between any pair of nodes, i, j ∈ V. 

 

As with a tree structure, a network, N, may be defined by the link matrix, ΩN
 = (

N

ijω : i,j∈ V) as 

 





∉

∈
=

Nji

Nji
N

ij
),(:0

),(:1
ω .                                                      (4) 
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However, there being no cost matrix to consider, ΩN
 in isolation has no significance.  Instead, it 

defines in turn a relay vector, σN
 = (

N

iσ : i∈ V), where 

 










=

>
=

∑

∑

=

=

1:0

1:1

1

1

n

j

N

ij

n

j

N

ij

N

i

ω

ω
σ .                                                       (5) 

 
N

iσ  defines whether node i is a relay in the network, N.  For the basic MRP, we seek to find the 

network, N
*
, that minimises the total number of relays, i.e. such that, for the relay objective 

function, fRel, 

 

∑∑
==

===
n

i

N

iNlN

n

i

N

il NfNf
1

Re

1

*

Re min)(min)(
*

σσ                   (6) 

 

for all (connected) networks, N. 

 

LEMMA  For a graph, G = (V, E), with n = |V| > 2, there are n networks N ⊆ E, with 

fRel(N) = 1. 

 

PROOF 

 

If N<h> (h ∈ V) is the star network (as in Figure 2) with h as its hub, then ><Ω hN
is given by 

 

Figure 2.  Star Network (F2)
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≠∧≠
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ij
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ω ,                                                 (7)

 

 

and, ><hNσ , in turn, by 

 





≠

=
=><

hi

hi
hN

i
:0

:1
σ .                                                             (8) 

 

Then ∑
=

><
><=

n

i

N

ihl
hNf

1

Re )( σ = 1 and there are n such networks, h = 1, 2, .., n. 

 
 

Consequently the solution to the MRP, denoted PRel, is trivial.  For n > 2, there must be at least 

one relay in the network (at least one node must be adjacent to at least two others) and any star 

network of the form shown in Figure 2 (with one relay) will be optimal.  The problem only 

takes interesting form when constrained. 

 

2.3. Minimum Degree Relay Problem (MDRP) 
 

The formulation given in Section 2.2 will be valid for a wireless network in which transmitters 

and receivers (transceivers) are omni-directional.  That is, if a single piece of equipment will 

suffice to maintain the link with all adjacent nodes.  If this is not the case, if a separate (steered) 

transceiver is required for each link, then it is necessary to consider the degree of a relay as a 

measurement of its cost.  In fact, this equipment may be necessary at terminal nodes also.  In 

this simple case, the cost of a network is given by its total degree, the sum of the degrees of all 

nodes. 

 

With ΩN
 defined as before for a network, N, the network degree vector, δN

 = (
N

iδ : i∈ V), is 

defined as 

 

∑
=

=
n

j

N

ij

N

i

1

ωδ                                                                  (9) 

 

and the node degree objective function, fnDg, for the problem PnDg, as 

 

∑∑
==

===
n

i

N

iNnDgN

n

i

N

inDg NfNf
11

* min)(min)(
*

δδ .                    (10) 

 

LEMMA For a graph, G = (V, E), with n = |V| > 2, for any tree, T ⊆ E, 

 fnDg(T) = 2(n - 1) = min N  fnDg(N) for all networks, N ⊆ E. 

 

PROOF 

 

T will have n-1 edges, each of which contributes one to the degree of each of its end nodes.  

Thus fnDg(T) = 2(n-1).  For any network, N = T ∪ B (B ⊆ E - T),  fnDg(N) = fnDg(T) + 2|B| = 

2(n-1) + 2|B| ≥  2(n-1). 
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So fnDg, in its unconstrained form, has constant (minimum) value, fnDg(T) = 2(n - 1), for all trees, 

T.  Ignoring transceiver costs at terminal nodes (which may be an integral part of the basic 

equipment), gives the relay degree objective function, frDg, for the problem PrDg as 

 

∑∑
==

===
n

i

N

i

N

iNrDgN

n

i

N

i

N

irDg NfNf
11

* min)(min)(
**

δσδσ ,                           (11) 

 

minimising the sum of the degrees of all relay nodes. 

 

LEMMA For a graph, G = (V, E), with n = |V| > 2, for any tree, T ⊆ E with r relays, 

frDg(T) = n + r - 2. 

 

PROOF 

 

fnDg(T) = 2(n-1).  There are n - r non-relay nodes, each of degree one.  So frDg(T) = 2(n-1) - (n-r) 

= n + r - 2. 

 
 

So, for a tree, T, of n nodes and r relays, frDg(T) = n + r - 2, which is minimised once again by 

any network of the form in Figure 2 (n + r - 2, for fixed n, is minimised by minimising r).  

Again, the (MDRP) problem in its unconstrained form is trivial. 

 

 

3.  THE CONSTRAINED MRP 
 

There are a number of constraints that may be applied to the MRP (PRel) or MDRP (PnDg or 

PrDg).  These relate broadly to practical restrictions such as invalid link/relay choices, 

redundancy/robustness requirements, maximum capacities and dealing with equipment already 

in place.  This section considers each in turn. 

 

3.1. Edge Constraints 
 

There are two reasons, in particular, why an edge between two nodes may not be feasible.  Both 

depend explicitly upon the technology concerned but may be generalised.  Firstly, the distance 

between nodes may be too great.  Secondly, many forms of wireless link require line-of-sight  

(l-o-s) adjacency, which may or may not be available. 

 

Define the distance matrix, D = (dij: i,j∈ V) where dij is the distance between nodes i and j.  D is 

partially analogous to the cost matrix, C.  In situations obeying the two-dimensional Euclidean 

model, dij = [(xi-xj)²+ (yi-yj)²]
½
, where (xi, yi) and (xj, yj) are the Cartesian co-ordinates of nodes i 

and j.  However, non-Euclidean distances permit local factors to be considered.  Let the 

maximum link distance be dmax.  Define the Boolean line-of-sight (l-o-s) matrix, Π = (πij: i,j∈ V) 

by πij = 1 if line-of-sight exists between nodes i and j, and πij = 0 otherwise. 

 

The edge viability matrix, Z = (zij: i,j∈ V) is then defined as 
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 =≤

=
otherwise

dd
z

ijij

ij
:0

1&:1 max π
,                                             (12) 

 

which, in turn, redefines the edge set, E, as (i, j) ∈ E ⇔ zij = 1.  The problem is then to find a 

network, N, that minimises the objective function, fRel, fnDg or frDg for the graph, G = (V, E). PnDg 

remains trivial since any tree will minimise fnDg.  However, PRel and PrDg correspond to the NP-

complete (Connected) Vertex Cover and Maximum Leaf Spanning Tree problems (Garey & 

Johnson, 1979).  Neither is trivial and solutions are discussed in Section 4.  Before this, further 

constraints and complexities are considered. 

 

3.2. Node Constraints 
 

The installation of relay equipment at nodes may have pre-requisites.  The site must be 

technologically suitable and, in the case of a (e.g. broadband) subscriber distribution network, 

permission will be required.  The absence of either will make a node infeasible in a similar 

manner to edges in the previous sub-section. 

 

A node viability vector, z = (zi: i∈ V), can be defined as zi = 1 if a relay is permitted at node i 

and zi = 0 otherwise.  This Boolean vector may be extended, if necessary, to a generalised 

natural number equivalent, z = (zi = λi: i∈ V), where λi is the maximum degree permitted at 

node i.  Alternatively, it may be known that key equipment already exists at certain locations, in 

which case it will be appropriate to constrain a relay to a particular node (a fixed relay).  Whilst 

reducing the size of the solution space and hence (possibly) the time complexity of solution, 

these additional constraints may increase the design complexity (space complexity) of the 

solving algorithm. 

 

 

 

Figure 3.  Multiple Paths/Circuits (F3)
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3.3. Path Constraints 
 

In general, for any graph G = (V, E), for any given tree, T, there will be a number of connected 

networks, N, such that T⊆ N.  Comparing the networks in Figures 1, 3 & 4, fRel(F1) = fRel(F3) < 

fRel(F4), fnDg(F1) < fnDg(F3) < fnDg(F4) and frDg(F1) < frDg(F3) < frDg(F4). 

 

Although clearly sub-optimal with respect to the restrictions of subsections 3.1 and 3.2 (other 

than the last, fixed-relay constraint), there are two types of constraint that may justify solutions 

of the form shown in Figures 3 & 4.  Both address the reliability of the solution network.  

Firstly, it may be necessary that the path between two given nodes be no longer than some 

maximum number of edges.  Secondly, it may be required that a given number of independent 

paths exist between the two nodes.  Paths may be node- or edge-independent, giving two 

separate constraint forms. 

 

 

Define the path length matrix, P = (pij: i,j∈ V) to be such that pij represents the maximum 

number of links in the shortest path between i and j.  If pij = 1, for example, then i and j are 

constrained to be directly connected.  Shortest paths are easily computed (Dijkstra, 1959).  The 

problem of establishing multiple bounded-length paths, however, is NP-hard (Garey & Johnson, 

1979) and thus unusable as a constraint.  A more practical alternative, assuming some form of 

dynamic routing capability, is to specify a minimum degree at key nodes.  This may be achieved 

in conjunction with the constraints of the previous sub-section or explicitly through the 

definition of the minimum degree vector, ρ = (ρi: i ∈ V) where ρi gives the minimum number of 

nodes to which i must be connected. 

 

Applying path constraints will increase the complexities of problems PRel, PnDg and PrDg, except 

in the extremely constrained form of Figure 4 in which PRel(F4) = n (constant). 

 

 

 

Figure 4.  Multiple Paths/Circuits (F4)
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3.4. Load Constraints 
 

Load constraints are based upon a knowledge of the projected traffic in the network. This is not 

the same as defining static edge costs since the load on a given link or node will depend upon 

the final topology of the network.  As this is indeterminate at the outset, it may not serve as 

input to the optimization process.  Instead, an (initial) traffic matrix, T = (tij: i,j∈ V), is defined 

with tij giving the traffic originating at node i and destined for j.  This figure is independent of 

the path the traffic may take.  The total traffic between i and j is then tij + tji. 

 

In a solution network, N, define the load matrix, L
N
 = (

N

ijl : i,j∈ V) where 
N

ijl represents the 

traffic carried on the link (i, j) (in the direction i to j) in the configuration N.  Loads can be 

difficult to calculate across an entire network but can be determined individually as follows.  

For a fully (edge) feasible network, the load on each  (i, j) link is the traffic, tij, between the two 

nodes.  For (i, j) with zij = 0, a shortest path, using feasible edges, can be found (Dijkstra, 1959) 

and tij added to each link in the path.  If a link is removed, as in the algorithm in subsection 4.2, 

then load is recalculated similarly. 

 

Define also a load limit matrix, K = (κij: i,j∈ V), and a load limit vector, κ = (κi: i ∈ V). κij 

gives the maximum traffic permitted on the link (i, j), and κi through node i.  Then, for any valid 

solution network, N, 

 
N

ji

N

ijij ll +=ξ  ≤  κij   for all i,j∈ V                      (13) 

and 

∑
=

+=
n

j

N

ji

N

iji ll
1

)(ζ  ≤  κi  for all i∈ V .                      (14) 

 

 

4.  ALGORITHMS 
 

We begin this section by counting solutions. 

 

LEMMA  For a set of vertices V with n = |V| > 2, there are 2
n(n-1)/2

 possible graphs, 

G = (V, E). 

 

PROOF 

 

Each node, 1, 2, .., n,  may be connected to n-1 others, giving n(n-1) possible edges, counting 

each edge twice, so n(n-1)/2 in truth.  Each of these may or may not be a member of E, giving 

2
n(n-1)/2

 possible combinations in all. 

 
 

LEMMA For a set of vertices V with n = |V| > 2, there are n
n-2

 possible trees, T. 

 

PROOF 

 

There are numerous proofs of this famous result.  See Moon (1970) for a discussion. 
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THEOREM For a set of vertices V with n = |V| > 2,  ∆n, the number of connected networks 

is given recursively by 

 

∑
−

=

−−−
−

−−

∆−
−=∆

1

1

2/)1)((

2/)1(

)!()!1(

2)!1(
2

n nn

nn

n
n

n

µ

µµ
µ

µµ
.                        (15) 

 

PROOF 

(Adapted from Harary & Palmer, 1973). 

 

If Nn is the number of (connected or disconnected) networks on n nodes then 

 
2/)1(2 −= nn

nN .                                                         (16) 

 

Let ∆n be the number of connected networks on n nodes and Rn be the number of rooted 

networks on n nodes.  (A rooted network is a (connected or disconnected) network with one 

particular node, the root, distinguished from the rest.)  For each network of n nodes, there are n 

such rooted networks so 

 

Rn  =  n Nn.                                                                           (17) 

 

Finally, in preparation, let Rn(µ) be the number of rooted networks on n nodes whose root lies in 

a connected component of size µ.  The number of ways of selecting µ nodes from n is 

 

)!(!

!

µµµ −
=

n

n
Cn .                                                          (18) 

 

There are ∆µ connected networks on µ nodes and Nn-µ (connected or disconnected) networks on 

the n-µ nodes that remain.  This gives 
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!
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)( µµµµ

µ µµ
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∆
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−
= −

−
n
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N

n

n
R

n
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Combining these expressions, a network (of size n) with a connected component of size n is 

trivially a connected network so that 

 

Rn(n)  =  n∆n                                                             (20) 

 

giving 
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Constraints restrict the solution space somewhat but all of these counts increase exponentially 

with n.  Optimization by exhaustive search is not a viable option and an MST solution, 

minimising total distance rather than node degree, will give poor results (Section 5).  As an 

alternative, this section offers two simple, greedy algorithms that, in practice, work well. 

 

Given a graph, G = (V, E) and a valid connected solution, N, the constraints of Section 3 may 

be partitioned according to the point at which they take effect.  Define the edge and node 

constraints from sub-sections 3.1 and 3.2, apart from the fixed relay constraint, as the add 

constraints.  Define the fixed relay constraint and the performance constraints from sub-sections 

3.3 and 3.4 as the drop constraints.  Adding a new link or relay to N may only violate an add 

constraint, not a drop constraint.  (It is not permitted to add a link (i, j) for which zij=0 or a relay 

at i where zi=0.)  Removing a link or relay from N may only violate a drop constraint, not an 

add constraint.  This observation suggests adaptations of two standard algorithms 

(Kershenbaum & Chou, 1974). 

 

4.1. The Add Algorithm 
 

For a graph, G = (V, E), define the edge matrix, E = (eij: i, j ∈ V) for G as 

 





∉

∈
=

Eji

Eji
eij

),(:0

),(:1
                                                            (22) 

 

and the valency vector, v = (vi: i ∈ V), for G as 

 

∑
=

=
n

j

iji ev
1

.                                                                        (23) 

 

 

Figure 5.  Greedy Comparison

*

(a)  Viable edges     (b)  Optimal solution       (c)  Greedy solution
(node * selected first

in Add algorithm)
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A basic heuristic for the vertex cover problem is given by Papadimitriou & Steiglitz (1998).  

However, this must be extended to take constraints, particularly connectivity, into account.  If 

only add constraints are to be applied to the problem, then the following algorithm will 

approximate an optimal solution.  It constructs a network, N, from an empty link set, using the 

temporary spanning vector, s
N
 = (

N

is : i∈ V), where 
N

is = 0  initially for all i ∈ V and 
N

is = 1 as 

i is included. 

 
ADD 

     { Initialization } 

     for all i ∈ V do 
        si

N = 0 

     for all i, j ∈ V do 
        ωij

N = 0 

     find i such that 

        vi = maxj vj 

     si
N = 1 

     { Growth } 

     while there exists j such that 

                                sj
N = 0 do { 

        for all j ∈ V such that 
                            zj = 1 and eij = 1 and sj

N = 0 do { 

             ωij
N = 1 

          sj
N = 1 } 

      find i such that 

                vi-δiN = max j (vj-δjN) where sjN = 1 } 
 

A spanning relay is chosen initially as the node of highest degree.  A link is then established 

between it and all adjacent nodes.  From the nodes currently spanned, a new spanning relay is 

selected, adjacent to the maximum number of unspanned nodes, and the process is repeated.  

This is a node-based, constrained, maximising form of Prim’s algorithm (Prim, 1957) although, 

in this case, the greedy algorithm is not exact (Figure 5).  It does, however, perform well in 

practice (Section 5). 

 

4.2. The Drop Algorithm 
 

The drop constraints of Section 3 require a different approach.  The Drop algorithm works in 

reverse and can be applied with add and drop constraints or drop constraints only.  An initial 

solution is a network, fully connected so far as add constraints permit, from which links, and 

consequently relays, are removed, subject to drop constraints. 

 
DROP 

     { Initialization } 

     for all i, j ∈ V  such that 
                          (zi = 1 or zj = 1) and zij = 1 do 

        ωij
N = 1 

     { Reduction } 

     while there exists i, j such that 

                                δiN > ρi and δjN > ρj do { 
      find i, j such that 

                        <Can_remove(i,j)> and δiN-ρi = min k (δkN-ρk) 
        ωij

N = 0 } 
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The Boolean function, Can_remove(i,j), is defined as: 

 
Can_remove(i,j) = 

        there exists k such that 

            ωik
N = 1 and ωjk

N = 1 and 

            ξik + ξij ≤ κik and ξjk + ξij ≤ κjk and ζk + ξij ≤ κk 
 

Can_remove(i,j) finds a relay k through which to route traffic currently on (i,j), subject to 

satisfying the load constraints.  Satisfying path constraints is implicit in the min operation that 

follows.  Once again, the Drop algorithm does not guarantee optimality but performs well in 

practice. 

 

 

5.  COMPARISONS 
 

For a (fully-feasible) graph of just 9 nodes, there are approximately 5 million trees (n
n-2

) and 66 

billion connected networks (Equation 15).  For larger numbers of nodes, the ideal of comparing 

these heuristics with results from exhaustive search optimization is an impractical one.  Instead, 

the results produced by both algorithms, and their run times, are compared with a simple MST 

process as well as each other.  The MST should not be expected to provide a good solution but 

it provides a benchmark against which to compare other methods. 

 

5.1. Accuracy 
 

Test instances were generated randomly in the unit square, with x- and y- co-ordinates 

uniformly, independently distributed in the interval [0, 1].  Numbers of test runs from 20 to 100 

were used with a variety of constraint combinations and the MST, Add and Drop algorithms 

compared for each.  Some instances (disconnected graphs, for example) were infeasible and not 

included in summary results. 

 

Tested constraints consisted of the following, applied individually and in combination: 

 

• Maximum link distance (dmax from section 3.1) of between 0.1 and 1.0 of the unit square 

containing all co-ordinates.  (Shown as T, the transmit limit in Table 1 for values 

between T = 0.1 and T = 1.0.) 

• Line-of-sight πij for each pair (i,j), generated at random with probability L, with values 

between L = 0.1 and L = 1.0. 

• Node viabilities zi generated randomly with probability in the range 0.5 to 1.0.  (Again, 

smaller values almost always give infeasible graphs.) 

• Minimum degrees ρi randomly assigned from values 1, 2, 3 and 4.  (Higher values 

generally give infeasible solutions.) 

• Traffic matrices T with elements tij randomly generated on the interval [0,1] with load 

limits κi and κij randomly generated on the interval [0,n],  (the load limit on a particular 

link or node/relay being anything up to a maximum single link load multipled by the 

number of nodes.) 

 

Figures 6 to 10 show typical results.  Figure 6 shows an initial feasible edge set generated on 

200 nodes with complete l-o-s connectivity, a transmission distance limit of 0.15 (of unit 

distance) and no node constraints.   
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Table 1.  Comparing Add and Drop Performance with MST 
 
L: l-o-s probability – used to generate individual line-of-sight 

values 

 

T: transmit limit (dmax) as a proportion of the unit square containing 

all nodes 

 

A: Add algorithm    D: Drop algorithm 

 

Rel: f(Rel) for Add or Drop in proportion to MST 

nDg: f(nDg) for Add or Drop in proportion to MST 

rDg: f(rDg) for Add or Drop in proportion to MST 

 

   No. of nodes: 30 No. of runs: 100 

         T = 0.5                T = 1.0 

L = 0.1  A/Rel:#### D/Rel:####  A/Rel:0.66 D/Rel:0.69 

         A/rDg:#### D/rDg:####  A/rDg:0.87 D/nDg:0.89 

L = 0.5  A/Rel:0.33 D/Rel:0.34  A/Rel:0.16 D/Rel:0.18 

         A/rDg:0.73 D/rDg:0.74  A/rDg:0.67 D/nDg:0.69 

L = 1.0  A/Rel:0.14 D/Rel:0.16  A/Rel:0.05 D/Rel:0.06 

         A/rDg:0.62 D/rDg:0.65  A/rDg:0.58 D/nDg:0.60 

 

   No. of nodes: 100  No. of runs: 50 

           T = 0.5                T = 1.0 

L = 0.1  A/Rel:0.45 D/Rel:0.48  A/Rel:0.27 D/Rel:0.29 

         A/rDg:0.79 D/rDg:0.80  A/rDg:0.73 D/nDg:0.75 

L = 0.5  A/Rel:0.12 D/Rel:0.13  A/Rel:0.06 D/Rel:0.07 

         A/rDg:0.65 D/rDg:0.66  A/rDg:0.62 D/nDg:0.67 

L = 1.0  A/Rel:0.05 D/Rel:0.07  A/Rel:0.01 D/Rel:0.02 

         A/rDg:0.58 D/rDg:0.60  A/rDg:0.57 D/nDg:0.62 

 

No. of nodes: 300  No. of runs: 30 

         T = 0.1                T = 1.0 

L = 0.1  A/Rel:#### D/Rel:####  A/Rel:0.11 D/Rel:0.15 

         A/rDg:#### D/rDg:####  A/rDg:0.66 D/nDg:0.72 

L = 0.5  A/Rel:0.56 D/Rel:0.59  A/Rel:0.03 D/Rel:0.03 

         A/rDg:0.81 D/rDg:0.85  A/rDg:0.62 D/nDg:0.67 

L = 1.0  A/Rel:0.31 D/Rel:0.35  A/Rel:.004 D/Rel:.006 

         A/rDg:0.71 D/rDg:0.74  A/rDg:0.57 D/nDg:0.61 

 

No. of nodes: 1000 No. of runs: 20 

         T = 0.1                T = 1.0 

L = 0.1  A/Rel:#### D/Rel:####  A/Rel:0.04 D/Rel:0.07 

         A/rDg:#### D/rDg:####  A/rDg:0.65 D/nDg:0.71 

L = 0.5  A/Rel:0.19 D/Rel:0.20  A/Rel:.009 D/Rel:.016 

         A/rDg:0.68 D/rDg:0.75  A/rDg:0.60 D/nDg:0.66 

L = 1.0  A/Rel:0.09 D/Rel:0.13  A/Rel:.001 D/Rel:.002 

         A/rDg:0.60 D/rDg:0.67  A/rDg:0.56 D/nDg:0.61 

 

#### = no feasible solutions in test instances 
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Figure 6.  Feasible Edges

Figure 7.  MST Solution
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Figure 8.  Add Solution

Figure 9.  Drop Solution (1)
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The MST solution is given in Figure 7 with the figures for f(Rel) (=fRel), f(nDg) (=fnDg) and 

f(rDg) (=frDg).  Figure 8 shows the equivalent solution produced by the Add algorithm. fRel has 

been reduced by approximately four fifths and frDg by about one third.  The value of fnDg remains 

constant for tree structures.  In Figure 9, the Drop algorithm has been applied with the same 

constraints.  It also performs better than the MST but not quite so well as the Add.  Figure 10 

shows the same node/edge set with the additional constraint of a minimum vertex degree two  

(ρi = 2) for all nodes, i (so fRel = n).  These examples are broadly typical of the results 

summarised in Table 1. 

 

Table 1 compares the results of the Add and Drop algorithms for f(Rel) (=fRel) and f(rDg) (=frDg) 

with those from the MST.  A number of runs were used for each l-o-s and transmit limit 

combination, as described above.  Each figure is shown as a (mean) ratio of the objective 

number to that obtained with the MST, lower values showing the greater improvement.  Each 

pair compares the mean result for the Add and Drop algorithms.  Both algorithms improve as 

the valid edge set approaches full-feasibility since solution networks may tend toward the star 

network ideal of Section 2.  (For example in Table 1, for n = 100 with line-of-sight (L) 

probability 0.5 and transmit limit (T ≡ dmax) 0.5 (of the unit square), the Add algorithm reduces 

the number of relays to 12% of that in the MST solution and the total relay degree to 65% 

compared with the MST.  The equivalent figures for L = 1.0 and T = 1.0 are 1% and 57%.)  

However, both algorithms work reasonably well for a variety of constraints.  fnDg comparisons 

are only meaningful for problems constrained with drop constraints and are not included in 

these figures. 

 

Figure 10.  Drop Solution (2)
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In all cases tested, the Add algorithm produced the best results and is to be preferred to the Drop 

algorithm where its use is adequate.  That is, add constraints permit the use of the Add 

algorithm while (add and) drop constraints require the Drop algorithm to be used. 

 

5.2. Efficiency 
 

This paper is intended to discuss accuracy of results rather than computational complexity.  The 

programs used for algorithmic comparison are simple, written in a high-level language and 

largely non-optimized.  However, in conjunction with theoretical analysis, some guarded 

observations are possible although much is dependent upon applied constraints, including l-o-s 

characteristics, transmission limits and node, path and load restrictions.  Table 2 summarises run 

times for both (Add and Drop) algorithms implemented in Delphi Pascal running on a 2.8GHz 

desktop processor.  Shorter run times result from lightly- or un-constrained test cases and longer 

run times from heavily-constrained test cases. 

 

Prim’s algorithm may be implemented in approximately O(n log n) steps.  In principle, the Add 

algorithm has a similar (worst-case) complexity.  However, in practice it appears to function 

considerably better, due largely to the tendency for many nodes to be added to the spanning tree 

at each stage.  For a graph of 1000 nodes, the Add algorithm ran around six times faster than the 

MST algorithm (approximately 1 second compared with approximately 6 seconds) and the 

factor increases for larger values of n.  The Drop algorithm, in comparison, must test for 

connectivity and load constraints before removing a link and has (worst-case) complexity of 

O(n
3
).  For most practical constraint sets, however, it appears closer to O(n

2 
log n).  This is still 

significantly greater than the Add algorithm, which should be used in all cases where drop 

constraints do not apply. 

 

 

Table 2.  Run Times 

 
      Borland Delphi (Ver. 6) Pascal 

      2.8 GHz Pentium processor (1MB RAM) 

      (non-optimised code) 

 

Add Algorithm Drop Algorithm No. 

of 

nodes 

(n) 

 

Best 

case 

Mean Worst 

case 

Best 

case 

Mean Worst 

case 

30 < 1 < 1 < 1 < 1 < 1 ≈ 1 
100 < 1 < 1 ≈ 1 2 3 6 

300 < 1 ≈ 1 ≈ 1 28 35 47 

1000 ≈ 1 ≈ 1 ≈ 2 412 502 734 

 

     Run times (total elapsed program time) in seconds (s) 
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6.  CONCLUSIONS 
 

The graph-theoretic concepts discussed here are well established.  This paper has introduced the 

necessary variants and constraints for their application to the design of wireless networks.  

These restrictions require a re-tooling of existing solution methods.  The techniques given in 

this paper give good results but are not necessarily the last word in algorithmic design.  It is 

proposed that further refinement is possible based on a deeper consideration of particular 

constraint sets.  Enhanced constraint formulisations, based on further considerations such as 

frequency/bandwidth limitations are also proposed. 
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