
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

3-1-2005

Principles of Cost Minimisation in Wireless
Networks
Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been accepted for
inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Grout,V. (2005)’Principles of Cost Minimisation in Wireless Networks’.Journal of Heuristics, 11(2), 115 -133

http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Principles of Cost Minimisation in Wireless Networks

Abstract
This paper considers variations of the minimum connected vertex cover problem to be found in the study of
wireless network design. A simple, theoretic formulation is followed by a discussion of practical constraints.
Two algorithms are given and results compared.

Keywords
Minimum connected vertex cover problem, Wireless networks

Disciplines
Computer Sciences

Comments
Original publication is available at www.springerlink.com

This article is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/2

http://dx.doi.org/10.1007/s10732-005-0433-y
http://epubs.glyndwr.ac.uk/cair/2?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Heuristics, Vol. 11, No. 2, March 2005, pp115-133

Principles of Cost Minimisation in Wireless Networks

Vic Grout

Centre for Applied Internet Research (CAIR), University of Wales, NEWI

Plas Coch Campus, Mold Road, Wrexham, LL11 2AW, UK

Tel: +44(0)1978 293203, Fax: +44(0)1978 293168

v.grout@newi.ac.uk

ABSTRACT

This paper considers variations of the minimum connected vertex cover problem to be found in

the study of wireless network design. A simple, theoretic formulation is followed by a

discussion of practical constraints. Two algorithms are given and results compared.

KEYWORDS

Minimum connected vertex cover problem, Wireless networks,

Node constraints, Edge constraints, Path constraints, Load constraints,

Add algorithm, Drop algorithm

1. INTRODUCTION

The Minimum Connector Problem (MCP) for cabled networks has been understood well for

many years and applied in a variety of situations (Du & Pardalos, 1993). Given a number of

nodes, or vertices, we seek to find the optimum set of edges (an edge is a link between two

nodes) that fully connects the node set in question. (A network is connected if a path exists

between each pair of nodes.) To this end, a cost matrix is applied to the nodes requiring

interconnection with the cost element between each node pair - i.e. the cost of that edge -

reflecting the expenditure, distance, difficulty, etc. involved in joining the two. Finding the

Minimum Spanning Tree (MST) for the cost matrix will then result in the optimal solution across

the nodes – i.e. the minimum cost set of connecting edges.

A typical example is given in Figure 1. Here, cost has been taken to be the Euclidean distance

between node pairs and the MST minimises the total edge length in the connected solution. It

should be noted that the degree of each node (the number of edges in the solution adjacent to

that node – called the valency in some texts) differs from node to node. Terminal nodes (1, 3, 5,

9 & 10 in Figure 1) have degree one. A node of higher degree (2, 4, 6, 7 & 8) acts as some form

of connector or relay between/among the two, or more, nodes to which it is connected.

In certain applications it may be necessary to apply constraints to the basic MST solution,

reflecting practical restrictions/limitations. For example, in a traffic/load-carrying network, it

may be necessary to limit the size of a link or relay. Simple and efficient techniques are known

for finding the MST or for approximating it in its constrained form (Kershenbaum, 1993). The

defining feature of the MCP/MST problem/solution is that the objective function is cost as given

solely by the edge cost matrix. That is, the optimization process seeks to minimise the total cost

JOURNAL of HEURISTICS

2

of the edges in the solution network, whereas no consideration is given to the degree of

each/any node in the solution.

Many problems, but three in particular, have been noted in relation to this ‘distance-only’

approach to optimization. Firstly, the edge costs may not be known at the start of the

optimization process. Secondly, a tree network is very vulnerable to failure. Thirdly,

the cost of providing the necessary connection at the nodes themselves, rather than merely the

edges between them, is ignored. The complete solution is a complex one (Grout, 1988). This

paper, however, as an alternative, considers a variant of the MCP in which the cost of edges

(except in the form of constraints – see later) is irrelevant. Instead, the cost is determined by the

degree of the connecting nodes, reflecting the need for relay equipment to be installed at these

vertices. The basis for this model is the graph-theoretic minimum vertex cover problem (Garey

& Johnson, 1979) which, defined and constrained appropriately, proves to be particularly

applicable to wireless applications across a wide range. The necessary concepts are introduced

in stages, in line with increasingly demanding scenarios. The final formulation of this Minimum

Relay Problem (MRP) is general enough to deal with most appropriate practical applications

(Fowler, 2001 for example). Two approaches to the solution of the MRP are then considered

and compared.

The minimum vertex cover problem has been considered elsewhere in relation to particular

aspects of network design and management (Luo et al., 2002, for example) and in particular to

specialised cost functions in wireless networks (Baldi et al., 2002, for example). However, this

paper presents the first discussion of a generalised approach to wireless optimisation in a form

that allows multiple constraint forms to be applied flexibly and independently or in

combination.

Figure 1. Minimal Spanning Tree (F1)

1

2

3

4

5

6

7

8

9

10

JOURNAL of HEURISTICS

3

2. THE UNCONSTRAINED MCP & MRP

Variants of the MRP are introduced by comparison to the MST.

2.1. Minimum Connector Problem (MCP)

In the conventional MCP, a graph, G, is defined by a set of nodes (vertices), V and a set of

edges, E. If we can associate a cost, ce with each edge, e ∈ E, then finding the MST for G =

(V, E) will solve the MCP for the graph, G. Denote this problem PCon. The result will be a tree,

T
*
, that minimises the connection objective function, fCon, where

∑∑
∈∈

===
Te

eTConT

Te

eCon cTfcTf min)(min)(
*

* (1)

for all possible trees, T ⊆ E. An alternative (but equivalent and initially more useful)

formulation is to define a cost matrix, C = (cij: i,j ∈ V). (1 ≤ i, j≤ n, where n = |V|.) Then for

(i, j) ∈ E, cij represents the cost of the link, (i, j). For (i, j) ∉ E, cij = ∞. We also define a

Boolean link matrix, ΩT
 = (

T

ijω : i,j∈ V) as

∉

∈
=

Tji

Tji
T

ij
),(:0

),(:1
ω (2)

denoting whether an edge is present in any given solution, T. The MST, T
*
, is then found for

the matrix, C, giving ΩT*
. Any T, and in particular T

*
, will have n-1 edges and

∑∑∑∑
−

= +=

−

= +=

===
1

1 1

1

1 1

*
min)(min)(

*
n

i

n

ij

T

ijijTConT

n

i

n

ij

T

ijijCon cTfcTf ωω . (3)

(Assuming C to be symmetric about the leading diagonal, the elements on and below the

leading diagonal may be ignored.) The two solutions, (1) and (3), will be identical.

2.2. Minimum Relay Problem (MRP)

In a wireless network however, if a link is viable at all, then there being no expense involved in

cabling, assigning a cost to the equivalent edge is inappropriate. Instead, the true cost of the

network is derived from the cost of the relays at the connecting nodes. In Figure 1, for example,

the number of relays is five. The problem may be restated accordingly.

As before, define n nodes: 1, 2, ..., n by the set V. n = |V|. Suppose initially that an edge is

feasible between any pair of nodes. E = V × V, the Cartesian product of V with itself ({(i, j): i, j

∈ V}). Define a (connected) network, N, to be any set of edges, N ⊆ E in which (at least) one

path exists between any pair of nodes, i, j ∈ V.

As with a tree structure, a network, N, may be defined by the link matrix, ΩN
 = (

N

ijω : i,j∈ V) as

∉

∈
=

Nji

Nji
N

ij
),(:0

),(:1
ω . (4)

JOURNAL of HEURISTICS

4

However, there being no cost matrix to consider, ΩN
 in isolation has no significance. Instead, it

defines in turn a relay vector, σN
 = (

N

iσ : i∈ V), where

=

>
=

∑

∑

=

=

1:0

1:1

1

1

n

j

N

ij

n

j

N

ij

N

i

ω

ω
σ . (5)

N

iσ defines whether node i is a relay in the network, N. For the basic MRP, we seek to find the

network, N
*
, that minimises the total number of relays, i.e. such that, for the relay objective

function, fRel,

∑∑
==

===
n

i

N

iNlN

n

i

N

il NfNf
1

Re

1

*

Re min)(min)(
*

σσ (6)

for all (connected) networks, N.

LEMMA For a graph, G = (V, E), with n = |V| > 2, there are n networks N ⊆ E, with

fRel(N) = 1.

PROOF

If N<h> (h ∈ V) is the star network (as in Figure 2) with h as its hub, then ><Ω hN
is given by

Figure 2. Star Network (F2)

1

2

3

4

5

6

7

8

9

10

JOURNAL of HEURISTICS

5

≠∧≠

=∨=
=><

hjhi

hjhi
hN

ij
:0

:1
ω , (7)

and, ><hNσ , in turn, by

≠

=
=><

hi

hi
hN

i
:0

:1
σ . (8)

Then ∑
=

><
><=

n

i

N

ihl
hNf

1

Re)(σ = 1 and there are n such networks, h = 1, 2, .., n.

Consequently the solution to the MRP, denoted PRel, is trivial. For n > 2, there must be at least

one relay in the network (at least one node must be adjacent to at least two others) and any star

network of the form shown in Figure 2 (with one relay) will be optimal. The problem only

takes interesting form when constrained.

2.3. Minimum Degree Relay Problem (MDRP)

The formulation given in Section 2.2 will be valid for a wireless network in which transmitters

and receivers (transceivers) are omni-directional. That is, if a single piece of equipment will

suffice to maintain the link with all adjacent nodes. If this is not the case, if a separate (steered)

transceiver is required for each link, then it is necessary to consider the degree of a relay as a

measurement of its cost. In fact, this equipment may be necessary at terminal nodes also. In

this simple case, the cost of a network is given by its total degree, the sum of the degrees of all

nodes.

With ΩN
 defined as before for a network, N, the network degree vector, δN

 = (
N

iδ : i∈ V), is

defined as

∑
=

=
n

j

N

ij

N

i

1

ωδ (9)

and the node degree objective function, fnDg, for the problem PnDg, as

∑∑
==

===
n

i

N

iNnDgN

n

i

N

inDg NfNf
11

* min)(min)(
*

δδ . (10)

LEMMA For a graph, G = (V, E), with n = |V| > 2, for any tree, T ⊆ E,

 fnDg(T) = 2(n - 1) = min N fnDg(N) for all networks, N ⊆ E.

PROOF

T will have n-1 edges, each of which contributes one to the degree of each of its end nodes.

Thus fnDg(T) = 2(n-1). For any network, N = T ∪ B (B ⊆ E - T), fnDg(N) = fnDg(T) + 2|B| =

2(n-1) + 2|B| ≥ 2(n-1).

JOURNAL of HEURISTICS

6

So fnDg, in its unconstrained form, has constant (minimum) value, fnDg(T) = 2(n - 1), for all trees,

T. Ignoring transceiver costs at terminal nodes (which may be an integral part of the basic

equipment), gives the relay degree objective function, frDg, for the problem PrDg as

∑∑
==

===
n

i

N

i

N

iNrDgN

n

i

N

i

N

irDg NfNf
11

* min)(min)(
**

δσδσ , (11)

minimising the sum of the degrees of all relay nodes.

LEMMA For a graph, G = (V, E), with n = |V| > 2, for any tree, T ⊆ E with r relays,

frDg(T) = n + r - 2.

PROOF

fnDg(T) = 2(n-1). There are n - r non-relay nodes, each of degree one. So frDg(T) = 2(n-1) - (n-r)

= n + r - 2.

So, for a tree, T, of n nodes and r relays, frDg(T) = n + r - 2, which is minimised once again by

any network of the form in Figure 2 (n + r - 2, for fixed n, is minimised by minimising r).

Again, the (MDRP) problem in its unconstrained form is trivial.

3. THE CONSTRAINED MRP

There are a number of constraints that may be applied to the MRP (PRel) or MDRP (PnDg or

PrDg). These relate broadly to practical restrictions such as invalid link/relay choices,

redundancy/robustness requirements, maximum capacities and dealing with equipment already

in place. This section considers each in turn.

3.1. Edge Constraints

There are two reasons, in particular, why an edge between two nodes may not be feasible. Both

depend explicitly upon the technology concerned but may be generalised. Firstly, the distance

between nodes may be too great. Secondly, many forms of wireless link require line-of-sight

(l-o-s) adjacency, which may or may not be available.

Define the distance matrix, D = (dij: i,j∈ V) where dij is the distance between nodes i and j. D is

partially analogous to the cost matrix, C. In situations obeying the two-dimensional Euclidean

model, dij = [(xi-xj)²+ (yi-yj)²]
½
, where (xi, yi) and (xj, yj) are the Cartesian co-ordinates of nodes i

and j. However, non-Euclidean distances permit local factors to be considered. Let the

maximum link distance be dmax. Define the Boolean line-of-sight (l-o-s) matrix, Π = (πij: i,j∈ V)

by πij = 1 if line-of-sight exists between nodes i and j, and πij = 0 otherwise.

The edge viability matrix, Z = (zij: i,j∈ V) is then defined as

JOURNAL of HEURISTICS

7

 =≤

=
otherwise

dd
z

ijij

ij
:0

1&:1 max π
, (12)

which, in turn, redefines the edge set, E, as (i, j) ∈ E ⇔ zij = 1. The problem is then to find a

network, N, that minimises the objective function, fRel, fnDg or frDg for the graph, G = (V, E). PnDg

remains trivial since any tree will minimise fnDg. However, PRel and PrDg correspond to the NP-

complete (Connected) Vertex Cover and Maximum Leaf Spanning Tree problems (Garey &

Johnson, 1979). Neither is trivial and solutions are discussed in Section 4. Before this, further

constraints and complexities are considered.

3.2. Node Constraints

The installation of relay equipment at nodes may have pre-requisites. The site must be

technologically suitable and, in the case of a (e.g. broadband) subscriber distribution network,

permission will be required. The absence of either will make a node infeasible in a similar

manner to edges in the previous sub-section.

A node viability vector, z = (zi: i∈ V), can be defined as zi = 1 if a relay is permitted at node i

and zi = 0 otherwise. This Boolean vector may be extended, if necessary, to a generalised

natural number equivalent, z = (zi = λi: i∈ V), where λi is the maximum degree permitted at

node i. Alternatively, it may be known that key equipment already exists at certain locations, in

which case it will be appropriate to constrain a relay to a particular node (a fixed relay). Whilst

reducing the size of the solution space and hence (possibly) the time complexity of solution,

these additional constraints may increase the design complexity (space complexity) of the

solving algorithm.

Figure 3. Multiple Paths/Circuits (F3)

1

2

3

4

5

6

7

8

9

10

JOURNAL of HEURISTICS

8

3.3. Path Constraints

In general, for any graph G = (V, E), for any given tree, T, there will be a number of connected

networks, N, such that T⊆ N. Comparing the networks in Figures 1, 3 & 4, fRel(F1) = fRel(F3) <

fRel(F4), fnDg(F1) < fnDg(F3) < fnDg(F4) and frDg(F1) < frDg(F3) < frDg(F4).

Although clearly sub-optimal with respect to the restrictions of subsections 3.1 and 3.2 (other

than the last, fixed-relay constraint), there are two types of constraint that may justify solutions

of the form shown in Figures 3 & 4. Both address the reliability of the solution network.

Firstly, it may be necessary that the path between two given nodes be no longer than some

maximum number of edges. Secondly, it may be required that a given number of independent

paths exist between the two nodes. Paths may be node- or edge-independent, giving two

separate constraint forms.

Define the path length matrix, P = (pij: i,j∈ V) to be such that pij represents the maximum

number of links in the shortest path between i and j. If pij = 1, for example, then i and j are

constrained to be directly connected. Shortest paths are easily computed (Dijkstra, 1959). The

problem of establishing multiple bounded-length paths, however, is NP-hard (Garey & Johnson,

1979) and thus unusable as a constraint. A more practical alternative, assuming some form of

dynamic routing capability, is to specify a minimum degree at key nodes. This may be achieved

in conjunction with the constraints of the previous sub-section or explicitly through the

definition of the minimum degree vector, ρ = (ρi: i ∈ V) where ρi gives the minimum number of

nodes to which i must be connected.

Applying path constraints will increase the complexities of problems PRel, PnDg and PrDg, except

in the extremely constrained form of Figure 4 in which PRel(F4) = n (constant).

Figure 4. Multiple Paths/Circuits (F4)

1

2

3

4

5

7

8

9

10

6

JOURNAL of HEURISTICS

9

3.4. Load Constraints

Load constraints are based upon a knowledge of the projected traffic in the network. This is not

the same as defining static edge costs since the load on a given link or node will depend upon

the final topology of the network. As this is indeterminate at the outset, it may not serve as

input to the optimization process. Instead, an (initial) traffic matrix, T = (tij: i,j∈ V), is defined

with tij giving the traffic originating at node i and destined for j. This figure is independent of

the path the traffic may take. The total traffic between i and j is then tij + tji.

In a solution network, N, define the load matrix, L
N
 = (

N

ijl : i,j∈ V) where
N

ijl represents the

traffic carried on the link (i, j) (in the direction i to j) in the configuration N. Loads can be

difficult to calculate across an entire network but can be determined individually as follows.

For a fully (edge) feasible network, the load on each (i, j) link is the traffic, tij, between the two

nodes. For (i, j) with zij = 0, a shortest path, using feasible edges, can be found (Dijkstra, 1959)

and tij added to each link in the path. If a link is removed, as in the algorithm in subsection 4.2,

then load is recalculated similarly.

Define also a load limit matrix, K = (κij: i,j∈ V), and a load limit vector, κ = (κi: i ∈ V). κij

gives the maximum traffic permitted on the link (i, j), and κi through node i. Then, for any valid

solution network, N,

N

ji

N

ijij ll +=ξ ≤ κij for all i,j∈ V (13)

and

∑
=

+=
n

j

N

ji

N

iji ll
1

)(ζ ≤ κi for all i∈ V . (14)

4. ALGORITHMS

We begin this section by counting solutions.

LEMMA For a set of vertices V with n = |V| > 2, there are 2
n(n-1)/2

 possible graphs,

G = (V, E).

PROOF

Each node, 1, 2, .., n, may be connected to n-1 others, giving n(n-1) possible edges, counting

each edge twice, so n(n-1)/2 in truth. Each of these may or may not be a member of E, giving

2
n(n-1)/2

 possible combinations in all.

LEMMA For a set of vertices V with n = |V| > 2, there are n
n-2

 possible trees, T.

PROOF

There are numerous proofs of this famous result. See Moon (1970) for a discussion.

JOURNAL of HEURISTICS

10

THEOREM For a set of vertices V with n = |V| > 2, ∆n, the number of connected networks

is given recursively by

∑
−

=

−−−
−

−−

∆−
−=∆

1

1

2/)1)((

2/)1(

)!()!1(

2)!1(
2

n nn

nn

n
n

n

µ

µµ
µ

µµ
. (15)

PROOF

(Adapted from Harary & Palmer, 1973).

If Nn is the number of (connected or disconnected) networks on n nodes then

2/)1(2 −= nn

nN . (16)

Let ∆n be the number of connected networks on n nodes and Rn be the number of rooted

networks on n nodes. (A rooted network is a (connected or disconnected) network with one

particular node, the root, distinguished from the rest.) For each network of n nodes, there are n

such rooted networks so

Rn = n Nn. (17)

Finally, in preparation, let Rn(µ) be the number of rooted networks on n nodes whose root lies in

a connected component of size µ. The number of ways of selecting µ nodes from n is

)!(!

!

µµµ −
=

n

n
Cn . (18)

There are ∆µ connected networks on µ nodes and Nn-µ (connected or disconnected) networks on

the n-µ nodes that remain. This gives

)!()!1(

!

)!(!

!
)(µµµµ

µ µµ
µµµ −−

∆
=∆

−
= −

−
n

Nn
N

n

n
R

n

nn
. (19)

Combining these expressions, a network (of size n) with a connected component of size n is

trivially a connected network so that

Rn(n) = n∆n (20)

giving

∑

∑∑
−

=

−−−
−

−

=

−
−

=

−−

∆−
−=

−−

∆
−=

−==∆

1

1

2/)1)((

2/)1(

1

1

1

1

)(

)(

)!()!1(

2)!1(
2

)!()!1(

!11

n nn

nn

n
n

n

n

nn

nn

n

n

n

n

Nn

n
NRR

nn

R

µ

µµ
µ

µ

µµ

µ
µ

µµ

µµ
 (21)

JOURNAL of HEURISTICS

11

Constraints restrict the solution space somewhat but all of these counts increase exponentially

with n. Optimization by exhaustive search is not a viable option and an MST solution,

minimising total distance rather than node degree, will give poor results (Section 5). As an

alternative, this section offers two simple, greedy algorithms that, in practice, work well.

Given a graph, G = (V, E) and a valid connected solution, N, the constraints of Section 3 may

be partitioned according to the point at which they take effect. Define the edge and node

constraints from sub-sections 3.1 and 3.2, apart from the fixed relay constraint, as the add

constraints. Define the fixed relay constraint and the performance constraints from sub-sections

3.3 and 3.4 as the drop constraints. Adding a new link or relay to N may only violate an add

constraint, not a drop constraint. (It is not permitted to add a link (i, j) for which zij=0 or a relay

at i where zi=0.) Removing a link or relay from N may only violate a drop constraint, not an

add constraint. This observation suggests adaptations of two standard algorithms

(Kershenbaum & Chou, 1974).

4.1. The Add Algorithm

For a graph, G = (V, E), define the edge matrix, E = (eij: i, j ∈ V) for G as

∉

∈
=

Eji

Eji
eij

),(:0

),(:1
 (22)

and the valency vector, v = (vi: i ∈ V), for G as

∑
=

=
n

j

iji ev
1

. (23)

Figure 5. Greedy Comparison

*

(a) Viable edges (b) Optimal solution (c) Greedy solution
(node * selected first

in Add algorithm)

JOURNAL of HEURISTICS

12

A basic heuristic for the vertex cover problem is given by Papadimitriou & Steiglitz (1998).

However, this must be extended to take constraints, particularly connectivity, into account. If

only add constraints are to be applied to the problem, then the following algorithm will

approximate an optimal solution. It constructs a network, N, from an empty link set, using the

temporary spanning vector, s
N
 = (

N

is : i∈ V), where
N

is = 0 initially for all i ∈ V and
N

is = 1 as

i is included.

ADD

 { Initialization }

 for all i ∈ V do
 si

N = 0

 for all i, j ∈ V do
 ωij

N = 0

 find i such that

 vi = maxj vj

 si
N = 1

 { Growth }

 while there exists j such that

 sj
N = 0 do {

 for all j ∈ V such that
 zj = 1 and eij = 1 and sj

N = 0 do {

 ωij
N = 1

 sj
N = 1 }

 find i such that

 vi-δiN = max j (vj-δjN) where sjN = 1 }

A spanning relay is chosen initially as the node of highest degree. A link is then established

between it and all adjacent nodes. From the nodes currently spanned, a new spanning relay is

selected, adjacent to the maximum number of unspanned nodes, and the process is repeated.

This is a node-based, constrained, maximising form of Prim’s algorithm (Prim, 1957) although,

in this case, the greedy algorithm is not exact (Figure 5). It does, however, perform well in

practice (Section 5).

4.2. The Drop Algorithm

The drop constraints of Section 3 require a different approach. The Drop algorithm works in

reverse and can be applied with add and drop constraints or drop constraints only. An initial

solution is a network, fully connected so far as add constraints permit, from which links, and

consequently relays, are removed, subject to drop constraints.

DROP

 { Initialization }

 for all i, j ∈ V such that
 (zi = 1 or zj = 1) and zij = 1 do

 ωij
N = 1

 { Reduction }

 while there exists i, j such that

 δiN > ρi and δjN > ρj do {
 find i, j such that

 <Can_remove(i,j)> and δiN-ρi = min k (δkN-ρk)
 ωij

N = 0 }

JOURNAL of HEURISTICS

13

The Boolean function, Can_remove(i,j), is defined as:

Can_remove(i,j) =

 there exists k such that

 ωik
N = 1 and ωjk

N = 1 and

 ξik + ξij ≤ κik and ξjk + ξij ≤ κjk and ζk + ξij ≤ κk

Can_remove(i,j) finds a relay k through which to route traffic currently on (i,j), subject to

satisfying the load constraints. Satisfying path constraints is implicit in the min operation that

follows. Once again, the Drop algorithm does not guarantee optimality but performs well in

practice.

5. COMPARISONS

For a (fully-feasible) graph of just 9 nodes, there are approximately 5 million trees (n
n-2

) and 66

billion connected networks (Equation 15). For larger numbers of nodes, the ideal of comparing

these heuristics with results from exhaustive search optimization is an impractical one. Instead,

the results produced by both algorithms, and their run times, are compared with a simple MST

process as well as each other. The MST should not be expected to provide a good solution but

it provides a benchmark against which to compare other methods.

5.1. Accuracy

Test instances were generated randomly in the unit square, with x- and y- co-ordinates

uniformly, independently distributed in the interval [0, 1]. Numbers of test runs from 20 to 100

were used with a variety of constraint combinations and the MST, Add and Drop algorithms

compared for each. Some instances (disconnected graphs, for example) were infeasible and not

included in summary results.

Tested constraints consisted of the following, applied individually and in combination:

• Maximum link distance (dmax from section 3.1) of between 0.1 and 1.0 of the unit square

containing all co-ordinates. (Shown as T, the transmit limit in Table 1 for values

between T = 0.1 and T = 1.0.)

• Line-of-sight πij for each pair (i,j), generated at random with probability L, with values

between L = 0.1 and L = 1.0.

• Node viabilities zi generated randomly with probability in the range 0.5 to 1.0. (Again,

smaller values almost always give infeasible graphs.)

• Minimum degrees ρi randomly assigned from values 1, 2, 3 and 4. (Higher values

generally give infeasible solutions.)

• Traffic matrices T with elements tij randomly generated on the interval [0,1] with load

limits κi and κij randomly generated on the interval [0,n], (the load limit on a particular

link or node/relay being anything up to a maximum single link load multipled by the

number of nodes.)

Figures 6 to 10 show typical results. Figure 6 shows an initial feasible edge set generated on

200 nodes with complete l-o-s connectivity, a transmission distance limit of 0.15 (of unit

distance) and no node constraints.

JOURNAL of HEURISTICS

14

Table 1. Comparing Add and Drop Performance with MST

L: l-o-s probability – used to generate individual line-of-sight

values

T: transmit limit (dmax) as a proportion of the unit square containing

all nodes

A: Add algorithm D: Drop algorithm

Rel: f(Rel) for Add or Drop in proportion to MST

nDg: f(nDg) for Add or Drop in proportion to MST

rDg: f(rDg) for Add or Drop in proportion to MST

 No. of nodes: 30 No. of runs: 100

 T = 0.5 T = 1.0

L = 0.1 A/Rel:#### D/Rel:#### A/Rel:0.66 D/Rel:0.69

 A/rDg:#### D/rDg:#### A/rDg:0.87 D/nDg:0.89

L = 0.5 A/Rel:0.33 D/Rel:0.34 A/Rel:0.16 D/Rel:0.18

 A/rDg:0.73 D/rDg:0.74 A/rDg:0.67 D/nDg:0.69

L = 1.0 A/Rel:0.14 D/Rel:0.16 A/Rel:0.05 D/Rel:0.06

 A/rDg:0.62 D/rDg:0.65 A/rDg:0.58 D/nDg:0.60

 No. of nodes: 100 No. of runs: 50

 T = 0.5 T = 1.0

L = 0.1 A/Rel:0.45 D/Rel:0.48 A/Rel:0.27 D/Rel:0.29

 A/rDg:0.79 D/rDg:0.80 A/rDg:0.73 D/nDg:0.75

L = 0.5 A/Rel:0.12 D/Rel:0.13 A/Rel:0.06 D/Rel:0.07

 A/rDg:0.65 D/rDg:0.66 A/rDg:0.62 D/nDg:0.67

L = 1.0 A/Rel:0.05 D/Rel:0.07 A/Rel:0.01 D/Rel:0.02

 A/rDg:0.58 D/rDg:0.60 A/rDg:0.57 D/nDg:0.62

No. of nodes: 300 No. of runs: 30

 T = 0.1 T = 1.0

L = 0.1 A/Rel:#### D/Rel:#### A/Rel:0.11 D/Rel:0.15

 A/rDg:#### D/rDg:#### A/rDg:0.66 D/nDg:0.72

L = 0.5 A/Rel:0.56 D/Rel:0.59 A/Rel:0.03 D/Rel:0.03

 A/rDg:0.81 D/rDg:0.85 A/rDg:0.62 D/nDg:0.67

L = 1.0 A/Rel:0.31 D/Rel:0.35 A/Rel:.004 D/Rel:.006

 A/rDg:0.71 D/rDg:0.74 A/rDg:0.57 D/nDg:0.61

No. of nodes: 1000 No. of runs: 20

 T = 0.1 T = 1.0

L = 0.1 A/Rel:#### D/Rel:#### A/Rel:0.04 D/Rel:0.07

 A/rDg:#### D/rDg:#### A/rDg:0.65 D/nDg:0.71

L = 0.5 A/Rel:0.19 D/Rel:0.20 A/Rel:.009 D/Rel:.016

 A/rDg:0.68 D/rDg:0.75 A/rDg:0.60 D/nDg:0.66

L = 1.0 A/Rel:0.09 D/Rel:0.13 A/Rel:.001 D/Rel:.002

 A/rDg:0.60 D/rDg:0.67 A/rDg:0.56 D/nDg:0.61

= no feasible solutions in test instances

JOURNAL of HEURISTICS

15

Figure 6. Feasible Edges

Figure 7. MST Solution

JOURNAL of HEURISTICS

16

Figure 8. Add Solution

Figure 9. Drop Solution (1)

JOURNAL of HEURISTICS

17

The MST solution is given in Figure 7 with the figures for f(Rel) (=fRel), f(nDg) (=fnDg) and

f(rDg) (=frDg). Figure 8 shows the equivalent solution produced by the Add algorithm. fRel has

been reduced by approximately four fifths and frDg by about one third. The value of fnDg remains

constant for tree structures. In Figure 9, the Drop algorithm has been applied with the same

constraints. It also performs better than the MST but not quite so well as the Add. Figure 10

shows the same node/edge set with the additional constraint of a minimum vertex degree two

(ρi = 2) for all nodes, i (so fRel = n). These examples are broadly typical of the results

summarised in Table 1.

Table 1 compares the results of the Add and Drop algorithms for f(Rel) (=fRel) and f(rDg) (=frDg)

with those from the MST. A number of runs were used for each l-o-s and transmit limit

combination, as described above. Each figure is shown as a (mean) ratio of the objective

number to that obtained with the MST, lower values showing the greater improvement. Each

pair compares the mean result for the Add and Drop algorithms. Both algorithms improve as

the valid edge set approaches full-feasibility since solution networks may tend toward the star

network ideal of Section 2. (For example in Table 1, for n = 100 with line-of-sight (L)

probability 0.5 and transmit limit (T ≡ dmax) 0.5 (of the unit square), the Add algorithm reduces

the number of relays to 12% of that in the MST solution and the total relay degree to 65%

compared with the MST. The equivalent figures for L = 1.0 and T = 1.0 are 1% and 57%.)

However, both algorithms work reasonably well for a variety of constraints. fnDg comparisons

are only meaningful for problems constrained with drop constraints and are not included in

these figures.

Figure 10. Drop Solution (2)

JOURNAL of HEURISTICS

18

In all cases tested, the Add algorithm produced the best results and is to be preferred to the Drop

algorithm where its use is adequate. That is, add constraints permit the use of the Add

algorithm while (add and) drop constraints require the Drop algorithm to be used.

5.2. Efficiency

This paper is intended to discuss accuracy of results rather than computational complexity. The

programs used for algorithmic comparison are simple, written in a high-level language and

largely non-optimized. However, in conjunction with theoretical analysis, some guarded

observations are possible although much is dependent upon applied constraints, including l-o-s

characteristics, transmission limits and node, path and load restrictions. Table 2 summarises run

times for both (Add and Drop) algorithms implemented in Delphi Pascal running on a 2.8GHz

desktop processor. Shorter run times result from lightly- or un-constrained test cases and longer

run times from heavily-constrained test cases.

Prim’s algorithm may be implemented in approximately O(n log n) steps. In principle, the Add

algorithm has a similar (worst-case) complexity. However, in practice it appears to function

considerably better, due largely to the tendency for many nodes to be added to the spanning tree

at each stage. For a graph of 1000 nodes, the Add algorithm ran around six times faster than the

MST algorithm (approximately 1 second compared with approximately 6 seconds) and the

factor increases for larger values of n. The Drop algorithm, in comparison, must test for

connectivity and load constraints before removing a link and has (worst-case) complexity of

O(n
3
). For most practical constraint sets, however, it appears closer to O(n

2
log n). This is still

significantly greater than the Add algorithm, which should be used in all cases where drop

constraints do not apply.

Table 2. Run Times

 Borland Delphi (Ver. 6) Pascal

 2.8 GHz Pentium processor (1MB RAM)

 (non-optimised code)

Add Algorithm Drop Algorithm No.

of

nodes

(n)

Best

case

Mean Worst

case

Best

case

Mean Worst

case

30 < 1 < 1 < 1 < 1 < 1 ≈ 1
100 < 1 < 1 ≈ 1 2 3 6

300 < 1 ≈ 1 ≈ 1 28 35 47

1000 ≈ 1 ≈ 1 ≈ 2 412 502 734

 Run times (total elapsed program time) in seconds (s)

JOURNAL of HEURISTICS

19

6. CONCLUSIONS

The graph-theoretic concepts discussed here are well established. This paper has introduced the

necessary variants and constraints for their application to the design of wireless networks.

These restrictions require a re-tooling of existing solution methods. The techniques given in

this paper give good results but are not necessarily the last word in algorithmic design. It is

proposed that further refinement is possible based on a deeper consideration of particular

constraint sets. Enhanced constraint formulisations, based on further considerations such as

frequency/bandwidth limitations are also proposed.

7. ACKNOWLEDGEMENTS

The comments and suggestions offered by the referees have been invaluable in preparing the

paper for publication and were gratefully received. Thanks also to Mike Headon for proof

reading the final version.

8. REFERENCES

Baldi, P., De Nardis, L. & De Benedetto, M-G. (2002) Modeling and Optimisation of UWB Communication

Networks through a Flexible Cost Function, IEEE Journal on Selected Areas in Communications, Vol. 20, No. 9,

December 2002, pp1733-1744.

Dijkstra, E.W. (1959) A Note on Two Problems in Connexion with Graphs, Numerische Mathematik, Vol. 1,

pp269-271.

Du, D-Z. & Pardalos, P.M. (1993) Network Optimization Problems: Algorithms, Applications and Complexity,

World Scientific.

Fowler, T. (2001) Mesh Networks for Broadband Access, IEE Review, January 2001, pp17-22.

Garey, M.R. & Johnson, D.S. (1979) Computers and Intractibility: A Guide to the Theory of NP-Completeness,

Freeman.

Grout, V.M. (1988) Optimisation Techniques for Telecommunication Networks, Ph.D. Thesis, Plymouth

Polytechnic UK.

Harary, F. & Palmer, E.F. (1973) Graphical Enumeration, Academic Press.

Kershenbaum, A. (1993) Telecommunication Network Design Algorithms, McGraw-Hill.

Kershenbaum, A. & Chou, W. (1974) A Unified Algorithm for Designing Multidrop Teleprocessing Networks,

IEEE Transactions on Communications, Vol. COM-22, No. 11, pp1762-1772.

Luo, X., Yan, P., Guo, C. & Tang, Y. (2002) Optimal Placement and Deployment Strategies in Mobile Agent-Based

Network Management, IEEE International Conference on Communications, Circuits and Systems and West Sino

Expositions, Vol. 1, 29th June-1st July 2002, pp753-757.

Moon, J.W. (1970) Counting Labelled Trees, Canadian Mathematics Congress, Montreal.

Papadimitriou, C.H. & Steiglitz, K. (1998) Combinatorial Optimzation: Algorithms and Complexity, Dover.

Prim, R.C. (1957) Shortest Connection Networks and Some Generalizations, Bell Systems Technical Journal, Vol.

36, pp1389-1401.

	Glyndŵr University
	Glyndŵr University Research Online
	3-1-2005

	Principles of Cost Minimisation in Wireless Networks
	Vic Grout
	Recommended Citation

	Principles of Cost Minimisation in Wireless Networks
	Abstract
	Keywords
	Disciplines
	Comments

