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Abstract: In this paper, the growing significance of data analysis in manufacturing environments is ex-
emplified through a review of relevant literature and a generic framework to aid the ease of adoption
of regression-based supervised learning in manufacturing environments. To validate the practicality
of the framework, several regression learning techniques are applied to an open-source multi-stage
continuous-flow manufacturing process data set to typify inference-driven decision-making that
informs the selection of regression learning methods for adoption in real-world manufacturing envi-
ronments. The investigated regression learning techniques are evaluated in terms of their training
time, prediction speed, predictive accuracy (R-squared value), and mean squared error. In terms
of training time (TT), k-NN20 (k-Nearest Neighbour with 20 neighbors) ranks first with average
and median values of 4.8 ms and 4.9 ms, and 4.2 ms and 4.3 ms, respectively, for the first stage
and second stage of the predictive modeling of the multi-stage continuous-flow manufacturing
process, respectively, over 50 independent runs. In terms of prediction speed (PS), DTR (decision
tree regressor) ranks first with average and median values of 5.6784× 106 observations per second
(ob/s) and 4.8691× 106 observations per second (ob/s), and 4.9929× 106 observations per second
(ob/s) and 5.8806× 106 observations per second (ob/s), respectively, for the first stage and sec-
ond stage of the predictive modeling of the multi-stage continuous-flow manufacturing process,
respectively, over 50 independent runs. In terms of R-squared value (R2), BR (bagging regressor)
ranks first with average and median values of 0.728 and 0.728, respectively, over 50 independent
runs, for the first stage of the predictive modeling of the multi-stage continuous-flow manufacturing
process, and RFR (random forest regressor) ranks first with average and median values of 0.746
and 0.746, respectively, over 50 independent runs, for the second stage of the predictive modeling
of the multi-stage continuous-flow manufacturing process. In terms of mean squared error (MSE),
BR (bagging regressor) ranks first with average and median values of 2.7 and 2.7, respectively, over
50 independent runs, for the first stage of the predictive modeling of the multi-stage continuous-flow
manufacturing process, and RFR (random forest regressor) ranks first with average and median
values of 3.5 and 3.5, respectively, over 50 independent runs, for the second stage of the predictive
modeling of the multi-stage continuous-flow manufacturing process. All methods are further ranked
inferentially using the statistics of their performance metrics to identify the best method(s) for the
first and second stages of the predictive modeling of the multi-stage continuous-flow manufacturing
process. A Wilcoxon rank sum test is then used to statistically verify the inference-based rankings.
DTR and k-NN20 have been identified as the most suitable regression learning techniques given the
multi-stage continuous-flow manufacturing process data used for experimentation.

Keywords: artificial intelligence; data; data analysis; machine learning; manufacturing; regression;
regression learning; supervised learning
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1. Introduction

As the world continues to gravitate to artificial intelligence (AI)-driven societies,
where paradigms such as Industry 4.0 [1] and Society 5.0 [2] are gradually and increasingly
redefining the manufacturing and production of goods and services, and how we live and
interact, respectively, the role of the science of data in the drive for innovation and invention
cannot be overemphasized [3,4]. Presently, AI, which in a sense premises on data-driven
models and constructs [5], is one of the primary proponents of Industry 4.0 (I4.0) and
Industry 5.0 (I5.0) [3]. With a focus on manufacturing, from the first industrial revolution
in the 1760s to the present-day I4.0 and I5.0, manufacturing across the globe has always
involved workflows and processes that churn out vast amounts of data [3,4]. For example,
timestamps and time logs on machine tools and equipment, sensor readings, operational
speeds of rotating tools, and measurements of throughput and slags on shop floors have
always generated vast amounts of data [6,7]. As a matter of fact, this in a way idealizes big
data, where manufacturing big data can be broadly described as data collected at every
stage of manufacturing and/or production, including data from operators, equipment,
machine tools, process systems, and devices on the shop floor [8,9].

As hinted at above, manufacturing has always been data intensive. However, up until
recent times, manufacturing data has not really been used to “automagically” improve or
enhance the manufacturing processes that generated them in the first place [9,10]. In other
words, other than process monitoring and regulation that are mostly achieved via tradi-
tional process visualization and process control using human-machine interfaces (HMIs),
manufacturing data is still yet to be used extensively to support data-driven paradigms
such as predictive modeling (usually takes the form of predictive maintenance when ma-
chine behavior and the life cycle is the context [11,12]) and ubiquitous monitoring and
control (usually incorporated in the industrial internet of things (IIoT) where higher levels
of connectivity, interoperability and robustness is the goal [13,14]). This apparent gap can
be mainly attributed to the purpose-built or fit-for-purpose nature of most of the computa-
tional paradigms and analytic frameworks that support manufacturing processes [5].

To lend credence to the above-mentioned, the example of a manufacturing or pro-
duction process can be used. Take, for instance, a programmable logic controller (PLC)
designated for overseeing the operations of a conveyor belt system using a master-slave
(M-S) architecture that only needs to power the motor of the conveyor belt system on
and/or off based on some measured metrics such as read sensor values when the conveyed
item reaches a designated point or landmark along the production line as exemplified
in [15]. In a sense, every other data such as the remaining useful life (RUL) of the motor
and quality of the product (the item being conveyed in this case such as the bottles and
trays in [15]) that are also associated with the process may not really impact on the modi
operandi of the PLC-based M-S control architecture. However, if such data are made avail-
able and analyzed, inferences drawn from such analysis can go a long way in improving
the overall efficiency of the process. Consequently, it is to this end that data science is more
relevant than it has ever been before in ushering in a new era of data-driven innovations
and inventions in manufacturing environments.

It can be argued that many of the data-driven innovations and inventions expected to
be seen in the global manufacturing sector will be mostly based on predictive
modeling [3,5,16]. Generally, predictive modeling can be viewed as being synonymous
with supervised learning, a form of machine learning or subcategory of AI that can take on
the form of classification and/or regression, depending on the nature or type of data that
is employed. For most commercial applications, particularly, manufacturing applications
as discussed in [17], predictive modeling can also be called predictive analytics. Broadly
speaking, predictive analytics is the analysis of available data (e.g., explanatory and re-
sponse variables in a typical manufacturing process data set as carried out in Section 2.3)
and data trends using statistical learning and/or machine learning methods to enable
and support the prediction of future trends and/or responses. According to the literature,
the global manufacturing industry can be said to be in the early stage of adopting AI in
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many of their production processes, particularly, machine learning in the form of predictive
modeling [5,16]. So, this has necessitated the conceptualization, design, development, and
testing of several paradigms by scientists, engineers, and researchers as also carried out in
this work.

Presently, contemporary manufacturing technologies now support the embedding of
predictive modeling and other AI-based paradigms into many manufacturing and produc-
tion processes [18–20]. Some of these manufacturing processes include, but are not limited
to, maintenance planning, quality control, monitoring and regulation, and robust automa-
tion of shop floor operations [18–20]. Hence, there is a growing need to have a generic
framework that supports the holistic and granular use of data sets from manufacturing pro-
cesses to support data-driven innovations and inventions in manufacturing environments.
To respond to this need, a generalized framework is presented and investigated in this
paper to support predictive modeling in manufacturing environments. More specifically,
the following contributions are made:

• Formulation of a generalized framework for predictive modeling in manufacturing
environments using data collected from real-time manufacturing processes.

• Validation of the proposed generalized framework by applying several regression
learning techniques to undertake predictive modeling using an open-source multi-
stage continuous-flow manufacturing process data set.

• Summarized inference-based and statistically verified rankings for the adoption and
selection of regression learning techniques to potentially invent predictive modeling-
based paradigms for typical manufacturing processes.

The remainder of this paper is organized as follows: Section 2.1 provides a summarized
discussion on the relevant related work to further emphasize the usefulness of the work
carried out. Section 2.2 details the proposed generalized framework and the main steps
required for its implementation. An overview of the case study used to validate the
proposed generalized framework is provided in Section 2.3, alongside a description of
the associated multi-stage continuous-flow manufacturing process data set. The machine
learning problem addressed by the proposed framework in the context of the adopted case
study, and the investigated algorithms are detailed in Section 2.4. The experimental setup
used for the investigations is presented in Section 3. Results, discussions, and comparisons
are detailed in Section 4, and the concluding remarks are provided in Section 5.

2. Materials and Methods
2.1. Relevant Related Work

Machine learning (ML) in the form of data-driven predictive modeling in manufactur-
ing environments is gaining a lot of research interest in recent times [18–20]. Regression
or regression analysis or regression learning is one of the widely accepted approaches for
predictive modeling in many contexts, including manufacturing [21]. For example, in [7], a
generic data analytics system is proposed and demonstrated to be viable for manufacturing
production systems. Inventory forecasting, product evaluation, and machine tool condition
monitoring are some of the use cases adopted in [7]. For these use cases, manufacturing
tasks such as time-series prediction, rules extraction, and general prediction were ade-
quately accomplished. However, in contrast to the work carried out in this paper where
several machine learning methods have been investigated, only three machine learning
methods were reported on in [7], as part of the experiments and investigations conducted.
These methods are random forest, multilayer perceptron, and generalized linear model.
Even though these three machine learning methods are arguably among the widely used
and popular machine learning methods, there are several other widely-used and popular
machine learning methods such as the ones investigated in this paper.

To efficiently evaluate carbon emission from manufacturing processes, particularly
machining in manufacturing shop floors and/or workshops, a big data analysis approach
involving a data-driven multi-level assessment is proposed in [8] as another instance of
adopting ML in manufacturing environments. The work carried out and reported in [8]
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primarily involves three core stages that provide adequate insights into the pre-processing,
correlation analysis, and multi-level data-driven formulation of evaluation indicators or
responses of production state data from typical manufacturing shop floors or workshops.
Note that the essential steps such as the cleansing of the manufacturing data, partitioning
of the manufacturing processes, reduction of the manufacturing data, and extraction of
features from the manufacturing data are all adequately captured and detailed in [8], as
essential components of the proposed big data analysis approach. However, in contrast
to the work presented in this paper, predictive modeling was not explicitly undertaken as
part of the big data analysis approach in the manufacturing contexts detailed in [8].

More recently, to have more effective and efficient planning, scheduling, and manage-
ment with predictive maintenance and product quality in multistage manufacturing or
production systems comprising batching machines and finite buffers, a data-driven quan-
titative method is proposed in [22]. The method proposed in [22] premises on a decision
model represented by a Markov decision process whose optimal maintenance policy is
desired to satisfy Bellman’s optimality equation. To overcome the dimensionality curse and
solve the optimality equation, approximate dynamic programming implemented using a
deep Q-network algorithm is employed in [22]. Even though the work carried out in [22]
adequately and dynamically quantifies the impact of machine breakdowns, maintenance
actions, and quality failures on manufacturing or production, only one algorithm was
investigated and predictive modeling was not thoroughly explored to make a strong case
for harnessing its potential in manufacturing environments in areas such as forecasting and
trend analysis of manufacturing or production processes.

Similar work to the endeavor in [22] was reported in [10]. As a supposed improve-
ment on the work carried out in [22], the exploration of optimal maintenance policies also
represented by a Markov decision process is further augmented by considering machine
stoppage bottlenecks on the shop or plant floors. To do this, two approaches involving the
improvement of the worst machine and a random machine, respectively, were considered
with a focus on the reduction of the downtime duration. Even though machine stoppage
bottlenecks were considered alongside numerical analysis involving comparisons with
popular and widely accepted methods by manufacturers in [10] in addition to the work
carried out in [22], the drawback of not thoroughly exploring the potential of predictive
modeling to make a strong case for its adoption, given the manufacturing and/or produc-
tion context investigated remains. Hence, this can still be viewed arguably as a relatively
grey area of research interest considering the potential impact of the adoption of predictive
modeling in manufacturing or production environments.

Therefore, it is observed that currently, the available literature does not offer an in-
depth investigative study where several machine learning algorithms or techniques are
utilized in the same context to make a strong case for their adoption in predictive modeling
in manufacturing environments. For example in [20], only five methods are investigated to
make a case for optimal pick-and-place process controls that enhance the efficiency and
quality of surface mount technology. The research investigations presented in this paper are
devoted to this end, i.e., the investigation of multiple machine learning methods to make a
case for their potential adoption in typical manufacturing processes and/or environments.

2.2. The Proposed Framework

The flow diagram of the proposed generalized framework for the adoption of regres-
sion learning in manufacturing environments investigated in this work is shown in Figure 1.
The framework is both suitable for dynamic and/or static inflows of manufacturing data
and some of the steps are iterative. In the context of this work, dynamic data is defined
as data collected instantaneously and recursively from manufacturing processes and uti-
lized on the fly for data-driven predictive modeling. In this way, the model is updated
continuously and it feeds back, directly, to the manufacturing processes that produced
the data used for its construction. It is envisaged that such a model can be employed for
trend analysis and predictive maintenance in manufacturing environments. In contrast
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to dynamic data, static data in the context of this work is also defined as data collected
instantaneously from manufacturing processes; however, it is not utilized on the fly for
data-driven predictive modeling.

Figure 1. The proposed generalized framework.

To better distinguish between dynamic data and static data in this work, as already
explained above, it is good to note that in practice, the first step to undertaking real-world
predictive modeling is to utilize static data (as defined above) to build models that can
predict responses from manufacturing processes. These models are then fine-tuned and
thoroughly evaluated in terms of predictive accuracy, uncertainty, and other performance
metrics before they are deployed for on-the-fly data-driven predictive modeling using
dynamic data (as defined above). To validate the proposed framework, an open-source
multi-stage continuous-flow manufacturing process data set has been used as an initial step
to showcase its feasibility. Even though the multi-stage continuous-flow manufacturing
process data set has been generated by collecting data and information from dynamic
manufacturing processes [23], the models built using the data have not been deployed
in real-world manufacturing environments for paradigms such as trend analysis and
predictive maintenance. So, the framework proposed and investigated in this work primar-
ily serves as a precursor to real-world physical implementation. The essential steps are
described summarily as follows:

• Step 1: Data is collected instantaneously and/or recursively from critical manufactur-
ing processes of interest. The collected data is used to create a database, MDB.

• Step 2: Metrics for all explanatory and response variables in MDB, EDB and RDB,
respectively, are passed through purpose-built functions to generate a clean database,
MC

DB = [EC
DB, RC

DB], where unwanted observations or data (e.g., redundant data) are
handled correctly and robustly. See Section 2.3.1 for more details on the custom
functions adopted in this work.

• Step 3: Since the metrics in MC
DB are expected to be from the continuous-flow stages of

manufacturing processes, MC
DB is grouped to ensure metrics collected from the same

stage of the manufacturing process are collocated. For example, MC1
DB (first stage) and

MC2
DB (second stage) for a two-stage continuous-flow manufacturing process as we

have investigated in this work (See Section 2.3).
• Step 4: Exploratory data analysis techniques are employed for the univariate analysis

and multivariate analysis of the metrics in MC
DB to establish their descriptive statistics

and relationships. In this work, only descriptive statistics are presented.
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• Step 5: The explanatory metrics in MC
DB (i.e., EC

DB) are then normalized for regres-
sion learning to have a new database (i.e., EC

DBnorm
as carried out in this work (See

Section 2.4)).
• Step 6: Predictive modeling is carried out by applying several regression learning

techniques to [EC
DBnorm

, RC
DB] to ascertain the most suitable ones in terms of the mean

squared error (MSE), predictive accuracy (R-squared value (R2)), prediction speed
(PS), and training time (TT).

• Step 7: To rank all methods, some inferences are drawn a posteriori based on the
assessment of the outcomes from Step 6.

• Step 8: The inference-based rankings from Step 7 are statistically verified to determine
the best regression learning technique(s) to select and adopt for the given manufactur-
ing process data set.

More details about the implementation of the proposed framework are presented
in Sections 2.3, 2.4 and 3, where the case study involving an open-source multi-stage
continuous-flow manufacturing process data set is further described [23], the procedures
in all the steps summarized above are detailed, and the experimental setup is presented,
respectively. Note that, for such a data-driven paradigm concocted by the proposed
framework, the end product will be a software application that is deployed either as
an add-on or a toolbox for existing manufacturing process automation, monitoring, and
control software applications. Naively, the software application can be fed data (mostly
from sensors interfaced and integrated with the manufacturing process as described in
Section 2.3) and using this data, it implements the steps described above for the proposed
framework to build and select near-optimal regression learning models for the behavioral
analysis and predictive modeling of the manufacturing process that generated its input
data. The behavioral analysis and predictive modeling of the manufacturing process can
then be adopted for predictive maintenance, trend analysis, and optimal tuning of the
manufacturing process.

2.3. Case Study of a Multi-Stage Continuous-Flow Manufacturing Process

A case study involving a multi-stage continuous-flow manufacturing process is used
to validate the proposed framework in Section 2.2 and the architecture of the manufacturing
process is shown in Figure 2. In contrast to batch production or manufacturing process,
the materials being processed in this case study are constantly in motion on the shop
floor along the production or manufacturing process line. The main elements of the
multi-stage continuous flow manufacturing process are five operational machines (M1,
M2, M3, M4, and M5) and a combiner (COMB) that are employed in two stages (see
Figure 2). Sensors have been used for data (temperature, pressure, speed, and others)
collection [23]. Some of the data collected include (but are not limited to) factory ambient
conditions, temperature, pressure, speed, and amperage of the machines. Since the goal of
our work is to primarily report on predictive modeling, the manufacturing process and the
manufacturing environment used as the case study have not been extensively discussed.
However, more details about the manufacturing process and manufacturing environment
can be found in [23] or by contacting [24].

Considering the fact that the data collected from the two-stage continuous-flow manu-
facturing process is over a four-hour operational window, in comparison to the operational
hours of real-world manufacturing processes, this may be viewed as being relatively short
in some contexts, e.g., continuous manufacturing where the production lines are opera-
tional all the time and the available manufacturing process data can be infinitely large. The
operating conditions may also be assumed to be relatively stable due to the minimal or
no noise observed in the collected data set. In reality, the operational window would be
longer and unstable conditions may be observed from time to time, for example, due to me-
chanical vibrations, and friction noise, after long operational hours of rotating equipment
such as motors. Be that as it may, the four-hour operational window can still be argued to
emulate the multi-stage continuous-flow manufacturing process reasonably well based on
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the half-hour to five-hour sampling window recommended in [25] for modeling a typical
manufacturing process.

Figure 2. Architecture of the manufacturing process used as a case study.

To deploy data-driven predictive modeling systems in real-world manufacturing
scenarios, only a subset of the manufacturing data is used per time (and not an infinitely
large data set) due to limitations in hardware and computing resources, standard data
augmentation techniques can then be employed to extrapolate the data collected over
relatively short operational times to account for longer operational hours and better capture
the dynamics of the shop floors. Noisy data can be both studied and generated synthetically
from the big data to mirror or model current and potential noise patterns in the data set to
better account for unstable conditions that may stem from mechanical vibrations and others,
after long hours of operation. These approaches require additional studies, investigations,
experiments, and possibly a miniaturized manufacturing process model (for example, a
model such as the PETRA II [26]) to validate their practicality. Since this is beyond the
scope of the work presented in this paper, studies, investigations, and experiments, in this
regard, are neither presented nor discussed in this work.

With a focus on the data components of the two-stage continuous flow manufacturing
process, the first stage comprises three machines (M1, M2, and M3) that operate in parallel
to constitute the parallel stage of the multi-stage continuous flow manufacturing process.
M1, M2, and M3 each have eight process variables to account for properties such as
temperature, speed, pressure, amperage, and others. The outputs from M1, M2, and M3
are fed into a step that combines the flows. This combiner stage for M1, M2, and M3 has
three process variables associated with it) and its output is the primary controlled output.
The primary controlled output is measured at 15 unique locations. The combined output
from the first stage is then fed to the second stage of the continuous-flow manufacturing
process. The second stage comprises two machines (M4 and M5) that operate in series
to constitute the series stage of the multi-stage continuous-flow manufacturing process.
M4 and M5 each have seven process variables to also account for properties such as
temperature, speed, pressure, amperage, and others. The output from the second stage is
the secondary controlled output and it is also measured at 15 unique locations. The process
variables and the controlled outputs used for generating the data set are further discussed
in Section 2.3.1.

2.3.1. Data Set Description

The data used for the experimentation and investigations come from a single produc-
tion or manufacturing process run spanning several hours. Large quantities of this type of
data are available from [24], and they are often collected from multiple production lines
in various locations to mitigate bias and support the generalization of the data set. In our
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experiments, a total of over 14,000 observations have been used. If each observation (0i)
is defined as a proper subset of the set, MC

DB (database of the clean data (see Section 2.2)),
such that i ∈ [1,. . . , 14,088], the data set can be described mathematically as follows:

0i ⊆ MC
DB (1)

where MC
DB is generated from the data cleaning process detailed as follows:

1 For every observation in MDB, select all the columns for the explanatory variables to
have an array or matrix EDB and select all the columns for the response variables to
have an array or matrix RDB.

2 For every column vector (Ej
DB) in EDB, perform the following operations:

EC
DB =


Obtain the mode of Ej

DB Store as EMode
Determine the frequency of EMode in Ej

DB Store as EFreq.
If EFreq. ≥ THOLD remove Ej

DB from EDB Otherwise keep Ej
DB in EDB

(2)

3 For every column vector (Rj
DB) in RDB, perform the following operations:

RC
DB =


Obtain the mode of Rj

DB Store as RMode
Determine the frequency of RMode in Rj

DB Store as RFreq.
If RFreq. ≥ THOLD remove Rj

DB from RDB Otherwise keep Rj
DB in RDB

(3)

where THOLD is set to be equal to 6000 and MC
DB = {EC

DB, RC
DB}.

Note that by setting THOLD = 6000 in Equations (2) and (3), if any metric is repeated
for 6000 times or more (i.e., representing 40% or more) in any column of the metrics for the
explanatory and response variables, such a variable is assumed to be fairly constant and
discarded (not included in the data set). After the data cleaning operations, the variables in
MC

DB are mathematically described as follows for any ith observation having explanatory
variables 0E

i and response variables 0R
i in MC

DB:

0E
i =



{F1
AC, F2

AC}; Factory ambient conditions.
{M11

PV
, M12

PV
, M13

PV
, M14

PV
, M15

PV
, M16

PV
, M17

PV
, M18

PV
}; M1 process variables.

{M21
PV

, M22
PV

, M23
PV

, M24
PV

, M25
PV

, M26
PV

, M27
PV

, M28
PV
}; M2 process variables.

{M31
PV

, M32
PV

, M33
PV

, M34
PV

, M35
PV

, M36
PV

, M37
PV

, M38
PV
}; M3 process variables.

{T1
COMB, T2

COMB, T3
COMB}; Combiner stage process variables for M1, M2 and M3.

{M41
PV

, M42
PV

, M43
PV

, M44
PV

, M45
PV

, M46
PV

, M47
PV
}; M4 process variables.

{M51
PV

, M52
PV

, M53
PV

, M54
PV

, M55
PV

, M56
PV

, M57
PV
}; M5 process variables.

(4)

0R
i =


{S11

CO
, S12

CO
, S13

CO
, S14

CO
, S15

CO
, S16

CO
, S17

CO
, S18

CO
, S19

CO
, S110

CO
, S111

CO
, S112

CO
, . . .

S113
CO

, S114
CO

, S115
CO
}; Primary controlled output.

{S21
CO

, S22
CO

, S23
CO

, S24
CO

, S25
CO

, S26
CO

, S27
CO

, S28
CO

, S29
CO

, S210
CO

, S211
CO

, S212
CO

, . . .

S213
CO

, S214
CO

, S215
CO
}; Secondary controlled output.

(5)

From Equations (4) and (5), it can be seen that there are a total of 43 explanatory
variables and 30 response variables. For the predictive modeling of the primary controlled
output, the factory ambient conditions (i.e., [F1

AC, F2
AC]), the process variables of M1, M2

and M3 (i.e., [M11
PV

,. . . , M18
PV

], [M21
PV

,. . . , M28
PV

], and [M31
PV

,. . . , M38
PV

], respectively) and
the combiner stage process variables (i.e., [T1

COMB, T2
COMB, T3

COMB]) are the explanatory
variables, and the primary controlled output (i.e., [S11

CO
, . . . , S115

CO
]) is the response to be

predicted. The descriptive statistics for these variables are given in Tables 1 and 2. For the
predictive modeling of the secondary controlled output, the factory ambient conditions (i.e.,
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[F1
AC, F2

AC] and the process variables of M4 and M5 (i.e., [M41
PV

,. . . , M47
PV

], and [M51
PV

,. . . ,
M57

PV
], respectively) are the explanatory variables, and the secondary controlled output

(i.e., [S21
CO

, . . . , S215
CO

]) is the response. The descriptive statistics for these variables are given
in Tables 1 and 2.

Table 1. Descriptive statistics of the explanatory variables (non-normalized) from the data set.

Explanatory Variable Mean Median Minimum Maximum S.D.

First Condition: F1
AC 15.3 15.1 13.8 17.2 1.2

Second Condition: F2
AC 23.8 23.9 23.0 24.4 0.4

First Stage: M11
PV

1242.8 1264.4 231.3 1331.8 95.8
First Stage: M12

PV
72.0 72.0 71.9 72.5 0.1

First Stage: M13
PV

72.0 72.0 71.3 72.7 0.4
First Stage: M14

PV
70.3 72.0 44.4 88.5 5.5

First Stage: M15
PV

11.1 10.7 10.4 12.2 0.6
First Stage: M16

PV
409.0 417.0 359.5 487.2 20.5

First Stage: M17
PV

81.5 81.3 76.3 83.9 0.9
First Stage: M18

PV
76.0 75.0 69.7 80.0 2.1

First Stage: M21
PV

202.6 203.3 0.0 266.5 15.1
First Stage: M22

PV
69.0 69.0 68.7 69.7 0.1

First Stage: M23
PV

69.1 69.1 67.8 69.9 0.1
First Stage: M24

PV
73.4 73.4 71.6 74.4 0.4

First Stage: M25
PV

13.9 13.9 13.8 14.0 0.0
First Stage: M26

PV
226.1 226.1 218.9 250.6 3.1

First Stage: M27
PV

76.8 77.0 68.8 77.4 0.9
First Stage: M28

PV
60.0 60.0 59.6 60.5 0.2

First Stage: M31
PV

202.4 202.9 0.0 259.1 15.7
First Stage: M32

PV
78.0 78.0 77.3 78.7 0.1

First Stage: M33
PV

78.0 78.0 77.7 78.6 0.1
First Stage: M34

PV
345.1 342.9 321.2 374.3 9.1

First Stage: M35
PV

13.3 13.4 12.0 14.0 0.4
First Stage: M36

PV
246.8 247.5 235.1 263.7 6.1

First Stage: M37
PV

74.1 75.1 65.3 75.5 2.1
First Stage: M38

PV
65.0 65.0 64.8 65.2 0.1

First Stage: T1
COMB 108.9 105.5 45.3 118.9 5.7

First Stage: T2
COMB 84.9 74.8 53.3 115.2 18.6

First Stage: T3
COMB 80.0 80.0 79.6 80.3 0.1

Second Stage: M41
PV

360.1 360.0 298.0 393.0 2.3
Second Stage: M42

PV
360.1 360.0 284.0 396.0 3.0

Second Stage: M43
PV

17.2 17.0 14.0 25.0 0.9
Second Stage: M44

PV
322.6 324.0 268.0 327.0 3.7

Second Stage: M45
PV

17.2 17.0 14.0 25.0 0.9
Second Stage: M46

PV
309.8 311.0 260.0 326.0 2.9

Second Stage: M47
PV

187.1 192.0 35.0 216.0 23.7

Second Stage: M51
PV

310.0 310.0 309.4 310.3 0.0
Second Stage: M52

PV
290.0 290.0 289.7 290.3 0.1

Second Stage: M53
PV

269.7 270.0 263.8 270.0 1.0
Second Stage: M54

PV
242.7 242.7 237.6 245.0 1.6

Second Stage: M55
PV

245.0 245.0 242.9 245.7 0.1
Second Stage: M56

PV
63.4 63.4 62.8 66.1 0.4

Second Stage: M57
PV

154.0 155.6 45.4 159.2 10.3
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Table 2. Descriptive statistics of the response variables (non-normalized) from the data set.

Response Variable Mean Median Minimum Maximum S.D.

First Stage: S11
CO

12.9 13.0 0.0 20.9 0.9
First Stage: S12

CO
8.1 13.2 −3.1 19.1 6.9

First Stage: S13
CO

11.4 11.3 −4.9 23.5 1.1
First Stage: S14

CO
21.3 21.5 0.0 26.2 2.1

First Stage: S15
CO

32.9 33.5 −7.7 34.8 3.9
First Stage: S16

CO
0.1 0.0 −0.6 5.0 0.6

First Stage: S17
CO

1.3 1.6 −0.8 7.0 1.1
First Stage: S18

CO
1.1 0.0 −0.8 5.2 1.4

First Stage: S19
CO

19.8 20.9 −6.6× 10−10 22.5 4.8
First Stage: S110

CO
18.0 18.9 −3.6× 10−3 20.4 4.2

First Stage: S111
CO

7.7 7.8 −1.4× 10−3 13.1 1.1
First Stage: S112

CO
1.5 0.0 −1.6× 10−20 7.5 2.5

First Stage: S113
CO

1.2 1.5 −3.5× 10−4 4.0 0.7
First Stage: S114

CO
2.9 3.2 −1.2 6.9 0.9

First Stage: S115
CO

9.9 15.0 −6.6 22.3 7.4

Second Stage: S21
CO

11.7 12.8 −9.8× 10−137 19.1 3.6
Second Stage: S22

CO
6.3 6.5 −3.0× 10−5 12.9 1.6

Second Stage: S23
CO

10.3 10.9 −3.3× 10−107 16.5 2.3
Second Stage: S24

CO
19.3 20.6 −6.6× 10−107 25.2 4.7

Second Stage: S25
CO

2.9 0.0 −1.4× 10−13 34.3 9.2
Second Stage: S26

CO
2.7 2.7 −3.5× 10−95 8.1 0.4

Second Stage: S27
CO

0.5 0.6 −3.7× 10−105 3.3 0.2
Second Stage: S28

CO
2.9 3.0 −1.3× 10−109 7.4 0.5

Second Stage: S29
CO

18.4 19.7 −3.0× 10−104 24.8 5.0
Second Stage: S210

CO
11.6 16.6 −3.7× 10−3 18.4 7.6

Second Stage: S211
CO

7.5 7.9 −5.2× 10−95 8.6 1.6
Second Stage: S212

CO
5.4 5.6 −2.7× 10−95 6.3 1.2

Second Stage: S213
CO

2.0 2.1 −6.2× 10−96 5.2 0.4
Second Stage: S214

CO
3.5 3.5 −1.8× 10−95 8.0 0.5

Second Stage: S215
CO

7.5 7.9 −3.4 14.3 2.1

From the values reported in Tables 1 and 2, it can be said that the explanatory and
response variables all have a significant spread. This is an indication that for every 0i, the
elements all have values that are not necessarily close to their means (i.e., expected values)
which are spread over a wider range. To improve the performance and training stability
of the regression models to be built using the variables described in Tables 1 and 2, it is
essential to transform the features (i.e., specifically, the explanatory variables described in
Table 1) to be on a similar scale. In this work, normalization, a popular machine learning
approach has been used and it is discussed as follows:

Feature Scaling of the Data Set

Feature scaling is a widely used data pre-processing procedure in machine learning
when supervised learning techniques such as regression and classification are
employed [27,28]. It is often carried out through the normalization of the range of the
explanatory variables or independent variables (also called features) in the data set. Nor-
malization mainly guarantees that the numerical weights contributed approximately and
proportionally to the responses or targets by each explanatory variable (feature) are rela-
tively similar [28]. In this way, data redundancy is minimized and the variables have an
agreeable metric scale.

In a typical machine learning process, feature scaling can be implemented in a number
of ways [27,28]. For example, z-scores as carried out in [29] and min-max linear transfor-
mation as carried out in [30,31]. In this work, feature scaling has been implemented on



Inventions 2023, 8, 32 11 of 32

the explanatory variables (see Equation (4) and its description) using a min-max linear
transformation (normalization) as follows:

ECi
R

DBnorm
=

ECi
R

DB − ECi
R

DBmin

ECi
R

DBmax
− ECi

R
DBmin

(6)

where ECi
R

DB is the ith metric in the data column for the Rth variable in EC
DB whose minimum

and maximum values are ECi
R

DBmin
and ECi

R
DBmax

, respectively, and ECi
R

DBnorm
is the normalized

value defined as ECi
R

DBnorm
∈ [0, 1]. After the normalization, the transformed data set (MC

DBnorm
)

can be described mathematically as follows:

MC
DBnorm

= {EC
DBnorm

, RC
DB} (7)

2.4. The Machine Learning Problem and Investigated Methods

In this work, several specialized machine learning methods (including methods having
similar model construction methodologies but different hyperparameter settings or control
parameter settings) that support outputting multiple response variables for each prediction
are investigated. These algorithmic methods are demonstrated to be practical and useful
for undertaking predictive modeling in manufacturing environments as exemplified in this
work. Using the context of the case study presented in Section 2.3, predictive modeling
problem definition, feature scaling of the data set, regression learning, and summarized
description of the investigated machine learning methods are detailed as follows:

2.4.1. Predictive Modeling Problem Definition for the Case Study

Briefly, predictive modeling can be best described as a paradigm that adopts both
machine learning and data mining techniques to predict or forecast some target data or
responses given a set of observations. Considering the case study presented in Section 2.3,
to predict the manufacturing process line’s outputs (i.e., [S11

CO
, . . . , S115

CO
] for the first

stage and [S21
CO

, . . . , S215
CO

] for the second stage), machine learning methods or algorithms
that adequately support multi-target data are required. Intuitively, this is because the
manufacturing process data set (as described in Section 2.3) contains multi-target data from
the two stages (see Figure 2). Note that multi-target learning subsumes many machine
learning problems in several disciplines and handles complex decision-making in many
real-world applications such as manufacturing processes.

The complexity of multi-target learning mainly stems from its intrinsic multivariate
nature that yields complex interactions between its multiple explanatory and response
variables. These interactions have not been investigated in this work as exemplified
in [30] using typical explanatory variables because it is not within the scope of the work
carried out. However, since both the explanatory and response variables in MC

DBnorm
are continuous variables (see Tables 1 and 2, and Section 2.3), regression learning-based
predictive modeling must be employed to address the machine learning problem. This is
the focus of the work carried out in this paper and regression learning for the case study is
discussed in Section 2.4.2 as follows:

2.4.2. Regression Learning for the Case Study

Regression learning is a widely used supervised learning technique for machine
learning-based predictive modeling [32]. As a data-driven methodology, it generally takes
the form of linear regression analysis for the conventional analysis of data [33]. Primarily,
it is used for forecasting outcomes in a methodical and mathematical way that sorts the
impact of the independent feature(s) or variable(s) on the associated dependent response(s)
or variable(s) in any given data set. The regression learning implementation in this work
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can be mathematically described as follows for the two stages of the continuous-flow
manufacturing process:

S1mi
CO

= f (F
normn

i
AC , M1

normn
i

PV
, M2

normn
i

PV
, M3

normn
i

PV
, T

normn
i

COMB, β) + ei (8)

S2mi
CO

= f (F
normn

i
AC , M4

normn
i

PV
, M5

normn
i

PV
, β) + ei (9)

In Equation (8), S1
mm=[1,...,15]

i
CO

, F
normn=[1,2]

i
AC , M1

normn=[1,...,8]
i

PV
, M2

normn=[1,...,8]
i

PV
, M3

normn=[1,...,8]
i

PV
,

T
normn=[1,2,3]

i
COMB , β and ei are the primary controlled outputs, normalized factory ambient

conditions, normalized process variables for M1, normalized process variables for M2,
normalized process variables for M3, normalized process variables for the combiner stage
of M1, M2, and M3, unknown parameters (usually, scalar coefficients) and error terms
(usually, scalar), respectively, for the ith observation in MC

DBnorm
. m is the total number

of occurrences of the primary controlled output in MC
DBnorm

and n is the total number of
process variables from the factory ambient conditions, each of M1, M2, and M3, and the
combiner stage for M1, M2, and M3. Equation (8) is then used to predict S1CO for new or

arbitrary values of Fnorm
AC , M1norm

PV
, M2norm

PV
, M3norm

PV
and Tnorm

COMB. In Equation (9), S2
mm=[1,...,15]

i
CO

,

F
normn=[1,2]

i
AC , M4

normn=[1,...,8]
i

PV
, M5

normn=[1,...,8]
i

PV
, β and ei are the secondary controlled outputs,

normalized factory ambient conditions, normalized process variables for M4, normalized
process variables for M5, respectively, for the ith observation in the MC

DBnorm
. m is the total

number of occurrences of the secondary controlled output in MC
DBnorm

and n is the total
number of process variables from the factory ambient conditions and each of M4 and M5.
Equation (9) is then used to predict S2CO for new or arbitrary values of Fnorm

AC , M4norm
PV

, and
M5norm

PV
.

It is good to note that all the machine learning methods investigated in this work have
been applied for regression learning, in consonance with the multi-stage continuous-flow
manufacturing process data set described in Section 2.3.1. In other words, they have been
used for regression analysis. As a result, their respective approximate computational
complexities have been estimated using the context of a typical linear regression algorithm.
The implementation of linear regression mainly focuses on finding a solution to the matrix
or linear algebra problem described as follows:

(YY′)−1 × (Y′Z) (10)

where Y is the matrix holding the predictors or explanatory variables or independent
variables and it is a (14,088 × 29) matrix and a (14,088 × 16) matrix for the first stage and
second stage of the predictive modeling of the multi-stage continuous-flow manufacturing
process, respectively, as discussed in Section 2.3.1. Y′ is the transpose of Y, and Z is
the matrix holding the responses or target variables, or independent variables. Z is a
(14,088 × 15) matrix for both the first and second stages of the predictive modeling of the
multi-stage continuous-flow manufacturing process.

For the first stage of the predictive modeling of the multi-stage continuous-flow man-
ufacturing process, Y holds the metrics of the factory ambient conditions (i.e., [F1

AC,F2
AC])

and the following process variables (see Table 1): [M11
PV

,. . . , M18
PV

], [M21
PV

,. . . , M28
PV

],
[M31

PV
,. . . , M38

PV
] and [T1

COMB, T2
COMB, T3

COMB]. For the second stage of the predictive
modeling of the multi-stage continuous-flow manufacturing process, Y holds the metrics
of the factory ambient conditions (i.e., [F1

AC, F2
AC]) and the following process variables

(see Table 1): [M41
PV

,. . . , M47
PV

], and [M51
PV

,. . . , M57
PV

]. For the first stage of the predictive
modeling, Z holds the metrics of the primary output to control, i.e., [S11

CO
,. . . , S115

CO
] (see

Table 2). For the second stage of the predictive modeling of the multi-stage continuous-
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flow manufacturing process, Z holds the metrics of the secondary output to control, i.e.,
[S21

CO
,. . . , S215

CO
] (see Table 2).

By examining Equation (10) and the dimensions of Y and Z, respectively, the matrix
product Y×Y′ can be estimated to have a complexity ofO(292×14,088) andO(162 × 14,088)
for the first stage and second stage of the predictive modeling of the multi-stage continuous-
flow manufacturing process, respectively. The inverse operation of (Y×Y′)−1 can be
estimated to have a complexity ofO(293) andO(163) for the first stage and second stage of
the predictive modeling of the multi-stage continuous-flow manufacturing process, respec-
tively. The product Y′ × Z can be estimated to have a complexity of O(29× 14,088) and
O(16× 14,088) for the first stage and second stage of the predictive modeling of the multi-
stage continuous-flow manufacturing process, respectively. Hence, the overall computa-
tional complexity can be estimated to be O(14, 088× 292 + 293) and O(14,088× 162 + 163)
for the first stage and second stage of the predictive modeling of the multi-stage continuous-
flow manufacturing process, respectively. As such for any Mn total number of observations
from the manufacturing process having any Mp metrics, the computational complexity
may be generalized and estimated as follows:

O(Mn ×M2
p + M3

p) (11)

where Mn and Mp will assume their values according to the given linear regression problem.
The regression learning methods or regression techniques investigated in this work are

listed in Table 3 and references are also provided for their full descriptions. These methods
include variants of multi-output regression (MOR) in which different regression algorithms
have been used as estimators and k-nearest neighbors (k-NN) where the implementation is
carried out using four different values of k, 1, 5, 10, and 20 to have NN, k-NN5, k-NN10
and k-NN20, respectively.

Table 3. The regression learning methods investigated.

Method References

MOR-based Support Vector Regression (MOR-SVR) [34–36]

MOR-based Linear Support Vector Regression (MOR-LSVR) [34–36]

MOR-based Nu Support Vector Regression (MOR-NuSVR) [34,36,37]

MOR-based Gradient Boosting Regression (MOR-GBoostR) [34,36,38]

MOR-based Extreme Gradient Boosting Regression (MOR-XGBoostR) [34,36,38,39]

MOR-based Extreme Gradient Boosting Random Forest
Regression (MOR-XGBoostRFR) [34,36,40]

MOR-based Bayesian Ridge Regression (MOR-BRR) [34,36,41]

k-Nearest Neighbors (k-NN) [36,42,43]

Random Forest Regressor (RFR) [36,40,44]

Decision Trees Regressor (DTR) [36,45]

Extra-Trees Regressor (ETR) [36,46]

Ridge Regression (RR) [36,47]

Ridge Regression with Built-In Cross-Validation (RRCV) [36,48]

Multi-Task Least Absolute Shrinkage and Selection Operator
with Cross-Validation (MTLCV) [36,49]
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Table 3. Cont.

Method References

Least Absolute Shrinkage and Selection Operator Model Fit
Least Angle Regression (LLARS) [36,50]

Linear Regression (LR) [36,51]

Bagging Regressor (BR) [36,52]

Multilayer Perceptron Regressor (MLPR) [36,53]

3. Experimental Setup

For the implementation of all the machine learning methods, Scikit-learn library [36,54]
and Google Colaboratory development environment [55] have been used. Specifically, the
investigated algorithms have been coded using the library functions available from [36,54].
All the settings for the hyperparameters or control parameters for the respective methods
are the Scikit-learn library’s default settings, except where stated otherwise. The assumption
made is that these default settings in the Scikit-learn library are unlikely to be altered by
most manufacturing engineers, not experienced in machine learning. Conventionally, most
machine learning methods or algorithms show better performance if and/or when their
hyperparameters or control parameters are tuned or optimized [56,57]. However, since this
is not the aim of this work, this has not been investigated.

In this work, some exceptions regarding hyperparameter tuning investigations can
be found in methods such as k-NN (k-nearest neighbor), where different values have
been used for the number of neighbors to have different approaches for the same method.
Other methods such as RF (random forest) and SVR (support vector regression) that can
be argued not to naturally support multi-target regression have been fitted using the
multi-output regressor (MOR) in the Scikit-learn library to have different adaptations (or
tuning, naively) to allow for multi-target regression using different approaches with similar
underlying frameworks. These methods can also be viewed as an exception in terms of
hyperparameter tuning. To examine the predictive accuracy of the fitted models from all
methods, the validation scheme used is hold-out validation. The choice of this validation
scheme is guided by the total number of observations (more than 14,000 (see Section 2.3)).
Following some popular approaches for typical hold-out validation schemes [58], 70% of
the observations have been used as the training data set and the remaining 30% have been
used as the test data set for all experiments.

To compare the regression models built and trained by all methods, the training
time (TT), prediction speed (PS), predictive accuracy (R-squared value (R2)), and mean
squared error (MSE) of all methods are used over 50 independent statistical runs. In
each independent run, a regression model is built and trained for each of the methods
investigated. Note that the 50 independent runs allow for statistical inference and analysis,
and comparisons of the efficiencies and robustness of the investigated methods in terms
of their performance metrics (TT, PS, R2, and MSE). Also, by having a sample size of
50, hypothesis tests for probability estimation using a z-statistic can be carried out (See
Section 4). All experiments have been carried out on a workstation with Intel 4-core i7-
4770K 3.50 GHz CPU and 24.0 GB RAM, except where stated otherwise. Elapsed times
reported are elapsed real times from a wall clock.

4. Results and Discussion

In this section, the results of all methods are presented, discussed, and compared in
terms of TT, PS, R2, and MSE. The comparisons are made to establish the most suitable
method for each stage of the predictive modeling of the multi-stage continuous-flow manu-
facturing process. The methods are ranked inferentially using their performance metrics
(TT, PS, R2, and MSE) from their independent runs, and the rankings are statistically
verified for validation.
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4.1. Training Time

In regression learning, the training time (TT) can be best described as the time taken
to build and train a regression model. TT is typically measured in seconds or fractions of
seconds (e.g., milliseconds, microseconds, nanoseconds, etc.). From Table 4, the following
observations are made for the TT of all methods for the first stage of the predictive modeling
of the multi-stage continuous-flow manufacturing process: (1) The TT of all methods are
generally lower than 120 s on average. (2) k-NN20 shows the best average and median
TT of 4.8 ms and 4.9 ms, respectively, over the 50 independent runs. (3) The average and
median TT for NN and k-NN10 (4.9 ms and 5.0 ms, and 5.0 ms and 5.1 ms, respectively)
over the 50 independent runs are also short and comparable to those of k-NN20. (4) MTLCV
shows the worst average and median TT of 60,883.6 ms and 60,837.8 ms, respectively, over
the 50 independent runs. (5) The average and median TT for BR and MLPR (58,489.6 ms
and 58,287.5 ms, and 42,700.9 ms and 42,682.0 ms, respectively) over the 50 independent
runs are also long. (6) The robustness of the methods is relative according to their standard
deviations over all runs: k-NN10 has the lowest standard deviation of 0.3 and MTLCV
has the highest standard deviation of 2035.8. So, in terms of TT stability for the first stage
of the predictive modeling of the multi-stage continuous-flow manufacturing process,
k-NN10 can be said to be the most robust among all the methods, while MTLCV is the least
robust. The box plots of TT for all the methods are shown in Figure 3, for the first stage of
the predictive modeling of the multi-stage continuous-flow manufacturing process. The
findings earlier discussed can be corroborated visually by an examination of the variations
in TT for all the methods in Figure 3.

Table 4. Training time (in milliseconds (ms)) for all methods over 50 statistical runs (the first stage).

Method Best Worst Average Median S.D.

MOR-SVR 4575.9 6671.0 4827.9 4727.1 400.7
MOR-LSVR 40,305.4 48,648.8 42,700.9 42,682.0 1434.7
MOR-NuSVR 113,936.0 123,388.0 117,689.1 117,561.5 1963.4
MOR-GBoostR 11,168.3 14,176.8 13,158.5 13,318.5 673.0
MOR-XGBoostR 13,315.4 16,089.9 13,712.1 13,588.3 533.6
MOR-XGBoostRFR 14,293.3 15,382.8 14,749.8 14,687.6 239.4
MOR-BRR 319.4 344.6 331.8 331.3 5.5
NN 1.8 6.3 4.9 5.0 0.5
k-NN5 3.5 5.8 5.1 5.2 0.4
k-NN10 3.8 5.4 5.0 5.1 0.3
k-NN20 3.6 5.4 4.8 4.9 0.4
RFR 7006.4 7704.1 7206.6 7170.0 158.5
ETR 1200.7 1245.8 1213.4 1211.5 8.5
DTR 57.4 71.6 60.2 58.6 3.6
RR 5.5 7.7 5.9 5.8 0.4
RRCV 37.2 55.1 44.2 43.7 3.5
MTLCV 56,858.4 65,233.8 60,883.6 60,837.8 2035.8
LLARS 13.3 61.7 15.9 14.3 7.1
LR 22.9 33.3 26.8 26.4 2.4
BR 57,496.6 61,163.2 58,489.6 58,287.5 806.4
MLPR 21,222.5 25,145.9 22,101.6 22,172.1 571.8
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Figure 3. Box plots of TT (over 50 statistical runs) for all methods for the first stage.

In a similar vein to the discussion above for Table 4 and Figure 3, the following
observations are made from Table 5 for the TT of all methods for the second stage of the
predictive modeling of the multi-stage continuous-flow manufacturing process: (1) The
TT of all methods are generally lower than 91 s on average. (2) k-NN20 shows the best
average and median TT of 4.2 ms and 4.3 ms, respectively, over the 50 independent runs.
(3) The average and median TT for k-NN10, k-NN5, and NN (4.4 ms and 4.4 ms, 4.5 ms
and 4.5 ms, and 4.5 ms and 4.5 ms, respectively) over the 50 independent runs are also
short and comparable to those of k-NN20. (4) MOR-NuSVR shows the worst average and
median TT of 90,015.0 ms and 89,941.3 ms, respectively, over the 50 independent runs.
(5) The average and median TT for MOR-LSVR and BR (39,647.9 ms and 39,768.1 ms, and
34,183.6 ms and 34,043.4 ms, respectively) over the 50 independent runs are also long.
(6) The robustness of the methods is relative according to their standard deviations over all
runs: k-NN5 and k-NN10 have the lowest standard deviation of 0.2 and MOR-LSVR has
the highest standard deviation of 983.8. So, in terms of TT stability for the second stage of
the predictive modeling of the multi-stage continuous-flow manufacturing process, k-NN5
and k-NN10 can be said to be the most robust among all the methods, while MOR-LSVR
is the least robust. The box plots of TT for all the methods are shown in Figure 4, for the
second stage of the predictive modeling of the multi-stage continuous-flow manufacturing
process. The findings earlier discussed can be corroborated visually by an examination of
the variations in TT for all the methods in Figure 4.
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Table 5. Training time (in milliseconds (ms)) for all methods over 50 statistical runs (the second stage).

Method Best Worst Average Median S.D.

MOR-SVR 2255.4 2489.4 2288.4 2281.9 33.8
MOR-LSVR 37,700.3 41,578.9 39,647.9 39,768.1 983.8
MOR-NuSVR 87,112.3 92,142.7 90,015.0 89,941.3 967.9
MOR-GBoostR 6050.4 7306.2 6888.9 6994.2 364.5
MOR-XGBoostR 6132.9 7488.9 6348.6 6313.3 191.8
MOR-XGBoostRFR 5589.7 7371.5 5808.3 5720.9 297.4
MOR-BRR 180.9 201.1 186.4 185.5 4.0
NN 1.6 5.6 4.5 4.5 0.5
k-NN5 3.7 4.8 4.5 4.5 0.2
k-NN10 3.5 4.7 4.4 4.4 0.2
k-NN20 3.1 4.8 4.2 4.3 0.4
RFR 2258.4 2584.2 2308.9 2282.4 72.5
ETR 740.5 845.3 756.7 752.0 16.3
DTR 19.6 22.6 20.2 20.0 0.6
RR 4.5 6.2 4.8 4.7 0.3
RRCV 25.6 32.3 28.0 27.5 1.6
MTLCV 17,352.7 19,314.4 18,337.5 18,385.4 384.9
LLARS 9.9 13.7 11.3 11.1 0.8
LR 13.8 20.9 16.3 15.9 1.7
BR 33,483.8 36,263.5 34,183.6 34,043.4 495.9
MLPR 19,726.4 20,654.0 20,127.9 20,117.5 220.0

Figure 4. Box plots of TT (over 50 statistical runs) for all methods for the second stage.

4.2. Prediction Speed

Generally, in machine learning, the prediction speed (PS) of a method is derived as
the total number of predictions made by a method divided by the time taken to make the
predictions. It is measured in observations per second (obs/s). The PS of all methods for
the first stage of the predictive modeling of the multi-stage continuous-flow manufacturing
process is reported in Table 6. From Table 6, the following observations are made for PS:
(1) The PS of all methods are generally higher than 90 obs/s on average. (2) DTR shows the
best average and median PS of 4.8691× 106 obs/s and 4.9929× 106 obs/s, respectively, over
the 50 independent runs. (3) The average and median PS for RR and RRCV (4.0102× 106

obs/s and 4.1101× 106 obs/s, and 3.8520× 106 obs/s and 3.9050× 106 obs/s, respectively)
over the 50 independent runs are also fast. (4) MOR-NuSVR shows the worst average
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and median PS of 9.2834× 101 obs/s and 9.2775× 101 obs/s, respectively, over all 50
independent runs. (5) The average and median TT for MOR-LSVR and BR (1.4115× 102

obs/s and 1.4085× 102 obs/s, and 3.4633× 103 obs/s and 3.4946× 103 obs/s, respectively)
over the 50 independent runs are also slow. (6) The robustness of all the methods is relative
according to their standard deviations over all runs: MOR-NuSVR has the lowest standard
deviation of 2.1876 and RR has the highest standard deviation of 3.9870× 105. So, in terms
of PS stability for the first stage of the predictive modeling of the multi-stage continuous-
flow manufacturing process, MOR-NuSVR can be said to be the most robust among all the
methods, while RR is the least robust. The box plots of PS for all the methods are shown in
Figure 5, for the first stage of the predictive modeling of the multi-stage continuous-flow
manufacturing process. The findings earlier discussed can be corroborated visually by an
examination of the variations in PS for all the methods in Figure 5.

Table 6. Prediction speed (in observations per second (obs/s)) for all methods over 50 statistical runs
(first stage).

Method Best Worst Average Median S.D.

MOR-SVR 5.6239× 105 4.1334× 105 4.9186× 105 4.8717× 105 2.9146× 104

MOR-LSVR 1.5552× 102 1.2501× 102 1.4115× 102 1.4085× 102 5.9448
MOR-NuSVR 9.6049× 101 8.5853× 101 9.2834× 101 9.2775× 101 2.1876
MOR-GBRoostR 3.4622× 104 2.2161× 104 3.0139× 104 3.0336× 104 2.1214× 103

MOR-XGBoostR 3.5163× 104 2.4821× 104 3.3007× 104 3.3504× 104 1.9354× 103

MOR-XGBoostRFR 1.0518× 105 7.5331× 104 1.0015× 105 1.0069× 105 4.3709× 103

MOR-BRR 5.6375× 105 4.8359× 105 5.1224× 105 5.1097× 105 1.4630× 104

NN 4.2699× 104 2.2612× 104 3.8062× 104 3.8004× 104 3.2043× 103

k-NN5 4.1211× 104 2.6105× 104 3.7383× 104 3.7048× 104 2.8666× 103

k-NN10 3.7018× 104 2.0611× 104 3.2667× 104 3.2526× 104 3.1338× 103

k-NN20 2.9755× 104 2.3212× 104 2.7355× 104 2.7384× 104 1.4434× 103

RFR 8.7096× 104 7.5532× 104 8.4908× 104 8.5385× 104 1.9828× 103

ETR 1.1799× 105 1.0883× 105 1.1583× 105 1.1622× 105 1.5385× 103

DTR 5.2917× 106 3.8139× 106 4.8691× 106 4.9929× 106 3.2706× 105

RR 4.6171× 106 2.5956× 106 4.0102× 106 4.1101× 106 3.9870× 105

RRCV 4.1563× 106 2.3477× 106 3.8520× 106 3.9050× 106 2.9426× 105

MTLCV 3.7941× 106 2.4586× 106 3.4746× 106 3.4643× 106 2.3376× 105

LLARS 4.1514× 106 1.4018× 106 3.6085× 106 3.7444× 106 5.4622× 105

LR 4.1822× 106 2.4105× 106 3.6997× 106 3.7071× 106 3.1664× 105

BR 3.5379× 103 2.9929× 103 3.4633× 103 3.4946× 103 1.0798× 102

MLPR 1.0661× 106 2.2993× 105 8.9940× 105 9.4811× 105 1.6888× 105

Figure 5. Box plots of PS (over 50 statistical runs) for all methods for the first stage.
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In a similar vein to the discussion above for Table 6 and Figure 5, the following observa-
tions are made from Table 7 for the PS of all methods for the second stage of the predictive
modeling of the multi-stage continuous-flow manufacturing process: (1) The PS of all
methods are generally higher than 130 obs/s on average. (2) DTR shows the best average
and median PS of 5.6784× 106 obs/s and 5.8007× 106 obs/s, respectively, over the 50 in-
dependent runs. (3) The average and median PS for RR and LLARS (4.4236× 106 obs/s
and 4.1231 × 106 obs/s, and 4.4792 × 106 obs/s and 4.2340 × 106 obs/s, respectively)
over the 50 independent runs are also fast and comparable. (4) MOR-NuSVR shows the
worst average and median PS of 1.3128× 102 obs/s and 1.3213× 102 obs/s, respectively,
over the 50 independent runs. (5) The average and median TT for MOR-LSVR and BR
(1.7654× 102 obs/s and 1.7680 obs/s, and 3.5747× 103 obs/s and 3.5933× 103 obs/s, re-
spectively) over the 50 independent runs are also slow. (6) The robustness of all methods is
relative according to their standard deviations over all runs: MOR-NuSVR has the lowest
standard deviation of 2.7050 and LLARS has the highest standard deviation of 4.4958× 105.
So, in terms of PS stability for the second stage of the predictive modeling of the multi-stage
continuous-flow manufacturing process, MOR-NuSVR can be said to be the most robust
among all the methods, while LLARS is the least robust. The box plots of PS for all the
methods are shown in Figure 6, for the second stage of the predictive modeling of the
multi-stage continuous-flow manufacturing process. The findings earlier discussed can
be corroborated visually by an examination of the variations in PS for all the methods in
Figure 6.

Table 7. Prediction speed (in observations per second (obs/s)) for all methods over 50 statistical runs
(second stage).

Method Best Worst Average Median S.D.

MOR-SVR 4.5950× 105 3.5034× 105 4.1594× 105 4.2574× 105 2.2816× 104

MOR-LSVR 1.9021× 102 1.6441× 102 1.7654× 102 1.7680× 102 5.6600
MOR-NuSVR 1.3475× 102 1.2274× 102 1.3128× 102 1.3213× 102 2.7050
MOR-GBoostR 3.9727× 104 2.8796× 104 3.4560× 104 3.4269× 104 2.2557× 103

MOR-XGBoostR 3.8692× 104 2.8567× 104 3.6527× 104 3.6795× 104 1.7434× 103

MOR-XGBoostRFR 1.2194× 105 7.9684× 104 1.1630× 105 1.1776× 105 6.0654× 103

MOR-BRR 6.6072× 105 4.5947× 105 5.7582× 105 5.7859× 105 3.3941× 104

NN 5.1418× 104 4.0254× 104 4.6993× 104 4.7415× 104 2.0383× 103

k-NN5 4.9592× 104 4.0310× 104 4.5902× 104 4.6354× 104 2.0259× 103

k-NN10 4.3716× 104 3.6807× 104 4.0243× 104 3.9825× 104 1.9493× 103

k-NN20 3.4977× 104 2.5228× 104 3.1848× 104 3.1948× 104 1.8785× 103

RFR 8.6406× 104 7.6123× 104 8.4357× 104 8.5108× 104 2.2585× 103

ETR 1.1598× 105 1.0321× 105 1.1374× 105 1.1470× 105 2.7651× 103

DTR 6.0917× 106 4.0165× 106 5.6784× 106 5.8007× 106 4.2400× 105

RR 4.7774× 106 3.2762× 106 4.4236× 106 4.4792× 106 2.2114× 105

RRCV 4.3636× 106 3.3754× 106 4.0458× 106 4.0721× 106 1.9418× 105

MTLCV 3.7229× 106 2.4182× 106 3.3676× 106 3.5491× 106 3.8213× 105

LLARS 4.6237× 106 2.1289× 106 4.1231× 106 4.2340× 106 4.4958× 105

LR 4.3447× 106 2.8044× 106 3.9983× 106 4.0774× 106 3.2755× 105

BR 3.6302× 103 3.3082× 103 3.5747× 103 3.5933× 103 6.4570× 101

MLPR 1.0929× 106 2.4127× 105 1.0069× 106 1.0317× 106 1.2004× 105
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Figure 6. Box plots of PS (over 50 statistical runs) for all methods for the second stage.

4.3. R-Squared Statistic

In machine learning, the R-squared value or statistic (R2) is also called the coefficient
of determination and it helps to estimate the goodness of the fit of regression models. In
regression learning, it can be derived as follows:

R2 =
SSR
SST

= 1− SSE
SST

(12)

where SSR is the sum of squares regression, SSE is the sum of squares residual error, and
SST is the sum of squares total. In Equation (12), R2 ∈ [0, 1], indicating that R2 typically
takes on a value between null and unity (i.e., 0% and 100%), where R2 = 0 indicates that
the regression model explains none of the variability of the response data around its mean
and R2 = 1 indicates that the model explains all the variability of the response data around
its mean. In other words, the higher the R2 value of the regression model, the better the
regression model fits the data (in this case the multi-stage continuous-flow manufacturing
process data). Note that for some methods, R < 0 holds when the regression model is
arbitrarily worse. Methods that yielded such models in our experiments have not been
presented in this work due to their non-suitability.

The R2 of all methods for the first stage of the predictive modeling of the multi-stage
continuous-flow manufacturing process is reported in Table 8. From Table 8, the following
observations are made for R2: (1) The R2 of all methods are generally higher than 0.18 on
average. (2) BR shows the best average and median R2 of 0.728 and 0.728, respectively,
over the 50 independent runs. (3) The average and median R2 for MOR-XGBoostR and
MOR-GBoostR (0.673 and 0.676, and 0.663 and 0.664, respectively) over the 50 independent
runs are also relatively high and comparable. (4) LLARS shows the worst average and
median R2 of 0.185 and 0.185, respectively, over the 50 independent runs. (5) The average
and median R2 for MOR-SVR and MOR-NuSVR (0.188 and 0.188, and 0.286 and 0.286,
respectively) over the 50 independent runs are also small. (6) All methods show relatively
good robustness according to their standard deviations over all runs: LLARS has the
lowest standard deviation of 0.002 and NN has the highest standard deviation of 0.016.
So, in terms of R2 stability for the first stage of the predictive modeling of the multi-stage
continuous-flow manufacturing process, LLARS can be said to be the most robust among all
the methods, while NN is the least robust. The box plots of R2 for all the methods are shown
in Figure 7, for the first stage of the predictive modeling of the multi-stage continuous-flow
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manufacturing process. The findings earlier discussed can be corroborated visually by an
examination of the variations in R2 for all the methods in Figure 7.

Table 8. R-squared value (R2) for all methods over 50 statistical runs (first stage).

Method Best Worst Average Median S.D.

MOR-SVR 0.199 0.176 0.188 0.188 0.005
MOR-LSVR 0.305 0.283 0.295 0.295 0.005
MOR-NuSVR 0.296 0.276 0.286 0.286 0.004
MOR-GBoostR 0.688 0.639 0.663 0.664 0.011
MOR-XGBoostR 0.701 0.633 0.673 0.676 0.016
MOR-XGBoostRFR 0.443 0.414 0.428 0.427 0.006
MOR-BRR 0.327 0.303 0.317 0.317 0.004
NN 0.628 0.564 0.594 0.596 0.016
k-NN5 0.622 0.554 0.592 0.591 0.013
k-NN10 0.594 0.533 0.570 0.572 0.015
k-NN20 0.535 0.505 0.523 0.524 0.007
RFR 0.693 0.620 0.661 0.660 0.015
ETR 0.397 0.366 0.380 0.379 0.006
DTR 0.450 0.338 0.436 0.438 0.015
RR 0.327 0.309 0.317 0.317 0.003
RRCV 0.326 0.310 0.317 0.317 0.004
MTLCV 0.325 0.309 0.317 0.317 0.003
LLARS 0.189 0.180 0.185 0.185 0.002
LR 0.323 0.308 0.317 0.316 0.003
BR 0.747 0.698 0.728 0.728 0.010
MLPR 0.404 0.357 0.376 0.375 0.009

Figure 7. Box plots of R2 statistic (over 50 statistical runs) for all methods for the first stage.

In a similar vein to the discussion above for Table 8 and Figure 7, the following
observations are made from Table 9 for the R2 of all methods for the second stage of the
predictive modeling of the multi-stage continuous-flow manufacturing process: (1) The R2

of all methods are generally higher than 0.53 on average. (2) RFR shows the best average
and median R2 of 0.746 and 0.746, respectively, over the 50 independent runs. (3) The
average and median R2 for MOR-GBoostR and MOR-XGBoostR (0.736 and 0.735, and 0.726
and 0.726, respectively) over the 50 independent runs are also high and comparable to those
of RFR. (4) LLARS shows the worst average and median R2 of 0.275 and 0.276, respectively,
over the 50 independent runs. (5) The average and median R2 for MOR-SVR (0.463 and
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0.463, respectively) over the 50 independent runs are also small in comparison to other
methods. (6) All methods show relatively good robustness according to their standard
deviations over all runs: LLARS has the lowest standard deviation of 0.005 and MOR-SVR,
MOR-LSVR, and RR have the highest standard deviation of 0.015 each. So, in terms of R2

stability for the second stage of the predictive modeling of the multi-stage continuous-flow
manufacturing process, LLARS can be said to be the most robust among all the methods,
while MOR-SVR, MOR-LSVR, and RR are the least robust. The box plots of R2 for all the
methods are shown in Figure 8, for the second stage of the predictive modeling of the
multi-stage continuous-flow manufacturing process. The findings earlier discussed can
be corroborated visually by an examination of the variations in R2 for all the methods in
Figure 8.

Table 9. R-squared value (R2) for all methods over 50 statistical runs (second stage).

Method Best Worst Average Median S.D.

MOR-SVR 0.494 0.434 0.463 0.463 0.015
MOR-LSVR 0.574 0.500 0.544 0.544 0.015
MOR-NuSVR 0.580 0.519 0.549 0.55 0.013
MOR-GBoostR 0.765 0.691 0.736 0.735 0.013
MOR-XGBoostR 0.748 0.694 0.726 0.726 0.013
MOR-XGBoostRFR 0.679 0.625 0.657 0.657 0.012
MOR-BRR 0.568 0.517 0.544 0.546 0.012
NN 0.733 0.686 0.706 0.703 0.012
k-NN5 0.729 0.694 0.709 0.710 0.009
k-NN10 0.739 0.686 0.713 0.715 0.013
k-NN20 0.725 0.687 0.708 0.708 0.010
RFR 0.769 0.726 0.746 0.746 0.010
ETR 0.675 0.604 0.648 0.649 0.014
DTR 0.689 0.635 0.662 0.660 0.012
RR 0.568 0.511 0.540 0.541 0.015
RRCV 0.564 0.497 0.538 0.539 0.014
MTLCV 0.573 0.511 0.541 0.543 0.013
LLARS 0.286 0.260 0.275 0.276 0.005
LR 0.569 0.516 0.542 0.543 0.012
BR 0.748 0.709 0.730 0.730 0.010
MLPR 0.621 0.557 0.592 0.592 0.014

Figure 8. Box plots of R2 statistic (over 50 statistical runs) for all methods for the second stage.
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4.4. Mean Squared Error

The mean squared error (MSE) is another statistical measure used in machine learning
to evaluate regression learning models. Mathematically, the MSE of a regression model is
the average squared difference between the predicted values by the model and the observed
values. In regression learning, it can be derived as follows:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (13)

where n is the number of observations, Yi and Ŷi are the actual value and estimated or
predicted value, respectively, for the ith observation in the data set. Note that in regression
learning, MSE is always positive or greater than null such that MSE→ 0 depicts the better
quality of the regression model and MSE = 0 indicates that the regression model is a
perfect predictor.

The MSE of all methods for the first stage of the predictive modeling of the multi-
stage continuous-flow manufacturing process is reported in Table 10. From Table 10, the
following observations are made for the MSE: (1) The MSE of all methods are generally
higher than 2.5 on average. (2) BR shows the best average and median MSE of 2.7 and
2.7, respectively, over the 50 independent runs. (3) The average and median MSE for
MOR-XGBoostR and MOR-GBoostR (3.2 and 3.3, and 3.4 and 3.4, respectively) over the
50 independent runs are also low and comparable. (4) MOR-SVR shows the worst average
and median MSE of 9.0 and 9.0, respectively, over the 50 independent runs. (5) The
average and median MSE for LLARS (8.3 and 8.3, respectively) over the 50 independent
runs are also high and comparable to those of MOR-LSVR and MOR-NuSVR (8.1 and 8.1,
respectively, for both methods). (6) The robustness of all methods is relative according to
their standard deviations over all runs: MOR-GBoostR, MOR-XGBoostR, k-NN5, k-NN10,
RFR and BR have the least standard deviation of 0.1, while MOR-SVR and MOR-LSVR
have the highest standard deviation of 0.3. So, in terms of MSE stability for the first stage of
the predictive modeling of the multi-stage continuous-flow manufacturing process, MOR-
GBoostR, MOR-XGBoostR, k-NN5, k-NN10, RFR and BR can be said to be the most robust
among all the methods, while MOR-SVR and MOR-LSVR are the least robust. The box
plots of MSE for all the methods are shown in Figure 9, for the first stage of the predictive
modeling of the multi-stage continuous-flow manufacturing process. The findings earlier
discussed can be corroborated visually by an examination of the variations in MSE for all
the methods in Figure 9.

In a similar vein to the discussion above for Table 10 and Figure 9, the following
observations are made from Table 11 for the MSE of all methods for the second stage
of the predictive modeling of the multi-stage continuous-flow manufacturing process:
(1) The MSE of all methods are generally higher than 3.0 on average. (2) RFR shows
the best average and median MSE of 3.5 and 3.5, respectively, over the 50 independent
runs. (3) The average and median MSE for MOR-GBoostR and MOR-XGBoostR (3.6 and
3.7, and 3.7 and 3.7, respectively) over the 50 independent runs are also relatively low
and comparable. (4) MOR-SVR shows the worst average and median MSE of 10.9 and
10.9, respectively, over the 50 independent runs. (5) The average and median MSE for
MOR-LSVR and MOR-NuSVR (10.2 and 10.2, and 10.3 and 10.3, respectively) over the
50 independent runs are also high and comparable. (6) The robustness of all methods
is relatively according to their standard deviations over all runs: MOR-GBoostR, MOR-
XGBoostR, MOR-XGBoostRFR, NN, k-NN5, k-NN10, k-NN20, RFR and BR have the least
standard deviation of 0.1, while MOR-SVR, MOR-LSVR, and MOR-NuSVR have the highest
standard deviation of 0.3. So, in terms of MSE stability for the second stage of the predictive
modeling of the multi-stage continuous-flow manufacturing process, MOR-GBoostR, MOR-
XGBoostR, MOR-XGBoostRFR, NN, k-NN5, k-NN10, k-NN20, RFR and BR can be said to be
the most robust among all the methods, while MOR-SVR, MOR-LSVR, and MOR-NuSVR
are the least robust. The box plots of MSE for all the methods are shown in Figure 10, for the
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second stage of the predictive modeling of the multi-stage continuous-flow manufacturing
process. The findings earlier discussed can be corroborated visually by an examination of
the variations in MSE for all the methods in Figure 10.

Table 10. Mean squared error (MSE) for all methods over 50 statistical runs (the first stage).

Method Best Worst Average Median S.D.

MOR-SVR 8.4 9.9 9.0 9.0 0.3
MOR-LSVR 7.4 8.8 8.1 8.1 0.3
MOR-NuSVR 7.4 8.7 8.1 8.1 0.3
MOR-GBoostR 3.1 3.6 3.4 3.4 0.1
MOR-XGBoostR 3.0 3.5 3.2 3.3 0.1
MOR-XGBoostRFR 5.1 6.0 5.6 5.6 0.2
MOR-BRR 6.7 7.4 7.0 7.1 0.2
NN 3.7 4.4 4.1 4.1 0.2
k-NN5 3.8 4.3 4.1 4.0 0.1
k-NN10 3.9 4.6 4.2 4.2 0.1
k-NN20 4.3 5.1 4.7 4.6 0.2
RFR 2.8 3.4 3.1 3.1 0.1
ETR 5.5 6.4 5.9 5.9 0.2
DTR 4.4 6.0 4.9 4.9 0.2
RR 6.5 7.4 7.0 7.0 0.2
RRCV 6.5 7.6 7.0 7.0 0.2
MTLCV 6.6 7.4 7.0 7.0 0.2
LLARS 7.8 8.9 8.3 8.3 0.2
LR 6.4 7.7 7.0 7.0 0.2
BR 2.5 3.1 2.7 2.7 0.1
MLPR 5.5 6.5 5.9 5.9 0.2

Figure 9. Box plots of MSE (over 50 statistical runs) for all methods for the first stage.
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Table 11. Mean squared error (MSE) for all methods over 50 statistical runs (the second stage).

Method Best Worst Average Median S.D.

MOR-SVR 10.3 11.6 10.9 10.9 0.3
MOR-LSVR 9.6 10.8 10.2 10.2 0.3
MOR-NuSVR 9.5 10.9 10.3 10.3 0.3
MOR-GBoostR 3.3 3.9 3.6 3.7 0.1
MOR-XGBoostR 3.4 4.0 3.7 3.7 0.1
MOR-XGBoostRFR 5.7 6.3 6.0 6.0 0.1
MOR-BR 8.0 9.1 8.5 8.5 0.2
NN 3.7 4.3 4.1 4.1 0.1
k-NN5 3.9 4.4 4.1 4.0 0.1
k-NN10 3.8 4.3 4.1 4.0 0.1
k-NN20 4.0 4.6 4.3 4.3 0.1
RFR 3.2 3.8 3.5 3.5 0.1
ETR 5.6 6.4 6.0 6.0 0.2
DTR 5.0 5.7 5.3 5.3 0.2
RR 8.0 8.9 8.5 8.5 0.2
RRCV 8.0 9.0 8.5 8.5 0.2
MTLCV 8.1 9.0 8.5 8.5 0.2
LLARS 8.6 9.8 9.2 9.2 0.2
LR 8.1 8.9 8.5 8.5 0.2
BR 3.2 3.8 3.5 3.5 0.1
MLPR 6.8 7.9 7.3 7.3 0.2

Figure 10. Box plots of MSE (over 50 statistical runs) for all methods for the second stage.

4.5. Ranking of All Methods

To straightforwardly rank all methods based on inference, positions or points are
assigned to each method using their average performances (over the 50 independent
statistical runs) for training time (TT), prediction speed (PS), R-squared values (R2) and
mean squared error (MSE). The points are assigned in descending order of performance to
have: 21, 20, 19, 18, . . . , 1. In this way, the best method(s) will have 21 points and the worst
method(s) will have one point. Tables 12 and 13 show how the overall points (sum of all
points or the positions) obtained by each method can be used to deduce the overall ranking
for the first and second stages of the predictive modeling of the multi-stage continuous-flow
manufacturing process, respectively. These results are further corroborated in Figures 11–13
where the ranking (in points) of all methods using the average values of their performance
metrics (i.e., TT, PS, R2, and MSE) over 50 statistical runs are shown for the first and



Inventions 2023, 8, 32 26 of 32

second stages of the predictive modeling of the multi-stage continuous-flow manufacturing
process.

Table 12. Ranking (in points) of all methods (the first stage).

Method TT PS R2 MSE Overall

MOR-SVR 1 13 2 10 26
MOR-LSVR 3 2 4 4 13
MOR-NuSVR 4 1 3 1 9
MOR-GBoostR 18 5 19 8 50
MOR-XGBoostR 19 7 20 7 53
MOR-GBoostRFR 12 11 12 6 41
MOR-BR 8 14 8 12 42
NN 16 9 17 20 59
k-NN5 17 8 16 18 59
k-NN10 15 6 15 19 55
k-NN20 14 4 14 21 53
RFR 20 10 18 9 57
ETR 11 12 11 11 45
DTR 13 21 13 13 60
RR 6 20 6 17 49
RRCV 9 19 9 14 51
MTLCV 5 16 7 2 30
LLARS 2 17 1 16 36
LR 7 18 5 15 45
BR 21 3 21 3 47
MLPR 10 15 10 5 40

Figure 11. Ranking (in points) of all methods using the average values of their performance metrics
(i.e., TT, PS, R2, and MSE) over 50 statistical runs for the first stage.

For the first stage of the predictive modeling of the multi-stage continuous-flow
manufacturing process, the overall rankings in Table 12 indicate that DTR ranks first
with a total of 60 points, NN and k-NN5 both rank second with 59 points in total each.
MOR-NuSVR ranks last with 9 points in total. This suggests that the overall performances
of DTR, NN, and k-NN5 are better for the first stage of the predictive modeling of the
multi-stage continuous-flow manufacturing process, in comparison to the other methods
investigated. In a similar vein, for the second stage of the predictive modeling of the multi-
stage continuous-flow manufacturing process, the overall rankings in Table 13 indicate
that k-NN20 ranks first with a total of 64 points, DTR and RFR rank second and third,
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with 61 points in total, and 60 points in total, respectively. MOR-LSVR and MOR-NuSVR
both rank last with 15 points in total each. This suggests that the overall performances of
k-NN20, DTR, and RFR are better for the second stage of the predictive modeling of the
multi-stage continuous-flow manufacturing process, in comparison to the other methods
investigated. If the average number of points obtained by each method for the two stages
of the predictive modeling of the multi-stage continuous-flow manufacturing process is
used to select the overall best method, then DTR having an average of 60.5 points will
be the overall best method for the predictive modeling of both stages of the multi-stage
continuous-flow manufacturing process. To statistically verify that the overall performances
of DTR and k-NN20 rank better than the other methods for the first and second stages
of the predictive modeling of the multi-stage continuous-flow manufacturing process,
respectively, hypothesis tests are carried out in the next subsection using the Wilcoxon
test [59].

Table 13. Ranking (in points) of all methods (the second stage).

Method TT PS R2 MSE Overall

MOR-SVR 1 13 2 10 26
MOR-LSVR 3 2 8 2 15
MOR-NuSVR 4 1 9 1 15
MOR-GBoostR 18 5 20 6 49
MOR-XGBoostR 19 6 18 7 50
MOR-XGBoostRFR 12 12 12 8 44
MOR-BRR 8 14 7 12 41
NN 16 9 14 19 58
k-NN5 17 8 16 18 59
k-NN10 15 7 17 20 59
k-NN20 14 4 15 21 64
RFR 20 10 21 9 60
ETR 11 11 11 11 44
DTR 13 21 13 14 61
RR 6 20 4 17 47
RRCV 9 18 3 13 43
MTLCV 5 16 5 5 31
LLARS 2 19 1 16 38
LR 7 17 6 15 45
BR 21 3 19 3 46
MLPR 10 15 10 4 39

Figure 12. Ranking (in points) of all methods using the average values of their performance metrics
(i.e., TT, PS, R2, and MSE) over 50 statistical runs for the second stage.
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Figure 13. Overall ranking (in points) of all methods using the average values of their performance
metrics (i.e., TT, PS, R2, and MSE) over 50 statistical runs.

4.6. Hypothesis Test

A Wilcoxon test [59] is the hypothesis test used in this work to statistically verify
the inference-based rankings detailed in Section 4.5. To carry out the test, the results
obtained by all methods for training time (TT), predictive accuracy (R2), prediction speed
(PS), and mean squared error (MSE) over the 50 independent statistical runs for each
stage of the predictive modeling of the multi-stage continuous-flow manufacturing process
are used as data samples. In this instance, the null hypothesis for the first stage of the
predictive modeling of the multi-stage continuous-flow manufacturing process is that the
data samples of DTR (the best method according to the inference-based ranking in Table 12)
and the other methods have equal medians at 5% significance level (i.e., 95% confidence
level). In a similar vein, the null hypothesis for the second stage of the predictive modeling
of the multi-stage continuous-flow manufacturing process is that the data samples of k-
NN20 (the best method according to the inference-based ranking in Table 13) and the other
methods have equal medians at 5% significance level (i.e., 95% confidence level). For the
two stages of the predictive modeling of the multi-stage continuous-flow manufacturing
process, if the resultant probability value (p-value) of the hypothesis test is less than or
equal to 0.05, then it can be said that a strong evidence exists against the null hypothesis
and it is therefore rejected.

The results for the hypothesis tests are shown in Tables 14 and 15, it can be said
that TT, PS, R2, and MSE rejected the null hypothesis in all the cases according to the
p-values reported in Tables 14 and 15, except for NN and k-NN5 where the p-values for
R2 are greater than 0.05 for the second stage of the predictive modeling of the multi-stage
continuous-flow manufacturing process. From the p-values reported in Table 14, it can be
said that the TT, PS, R2, and MSE of DTR over the 50 independent runs are significantly
better than the TT, PS, R2, and MSE of other methods for the first stage of the predictive
modeling of the multi-stage continuous-flow manufacturing process. In a similar vein, the
p-values reported in Table 15 also indicate that the TT, PS, and MSE of k-NN20 over the 50
independent runs are significantly better than the TT, PS, and MSE of other methods for
the second stage of the predictive modeling. Also, from Table 15, it can be deduced that the
R2 of k-NN20 over the 50 independent runs are significantly better than the R2 of all the
other methods except for NN and k-NN5. These exceptions can be easily attributed to the
stochastic nature and similarity of these methods and the number of statistical runs used
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for the experimentation. Therefore, the rankings earlier established in Tables 12 and 13 can
be said to be statistically valid.

Table 14. Hypothesis test: DTR v other methods (the first stage).

Method
TT
(p-Values)

PS
(p-Values)

R2

(p-Values)
MSE
(p-Values)

MOR-SVR 7.0661× 10−18 7.0645× 10−18 7.0454× 10−18 7.0629× 10−18

MOR-LSVR 7.0661× 10−18 7.0645× 10−18 7.0486× 10−18 7.0629× 10−18

MOR-NuSVR 7.0661× 10−18 7.0645× 10−18 7.0533× 10−18 7.0629× 10−18

MOR-GBoostR 7.0661× 10−18 7.0645× 10−18 7.0486× 10−18 7.0629× 10−18

MOR-XGBoostR 7.0661× 10−18 7.0645× 10−18 7.0549× 10−18 7.0629× 10−18

MOR-XGBoostRFR 7.0661× 10−18 7.0645× 10−18 2.4714× 10−9 2.2652× 10−16

MOR-BRR 7.0661× 10−18 7.0645× 10−18 7.0517× 10−18 7.0613× 10−18

NN 7.0661× 10−18 7.0645× 10−18 7.0613× 10−18 7.0629× 10−18

k-NN5 7.0661× 10−18 7.0645× 10−18 7.0581× 10−18 7.0613× 10−18

k-NN10 7.0661× 10−18 7.0645× 10−18 7.0613× 10−18 1.1412× 10−17

k-NN20 7.0645× 10−18 7.0645× 10−18 7.0517× 10−18 1.9649× 10−8

RFR 7.0661× 10−18 7.0645× 10−18 7.0533× 10−18 7.0629× 10−18

ETR 7.0661× 10−18 7.0645× 10−18 1.3462× 10−16 5.0133× 10−17

RR 7.0661× 10−18 7.2697× 10−15 7.0374× 10−18 7.0597× 10−18

RRCV 7.0661× 10−18 1.8002× 10−16 7.0422× 10−18 7.0629× 10−18

MTLCV 7.0661× 10−18 7.0629× 10−18 7.0311× 10−18 7.0629× 10−18

LLARS 9.5300× 10−17 8.0023× 10−17 7.0311× 10−18 7.0613× 10−18

LR 7.0661× 10−18 5.0144× 10−17 7.0502× 10−18 7.0629× 10−18

BR 7.0661× 10−18 7.0645× 10−18 7.0597× 10−18 7.0629× 10−18

MLPR 7.0661× 10−18 7.0645× 10−18 1.3474× 10−16 5.9759× 10−17

Table 15. Hypothesis test: k-NN20 v other methods (the second stage).

Method
TT
(p-Values)

PS
(p-Values)

R2

(p-Values)
MSE
(p-Values)

MOR-SVR 7.0661× 10−18 7.0661× 10−18 7.0629× 10−18 7.0629× 10−18

MOR-LSVR 7.0661× 10−18 7.0661× 10−18 7.0549× 10−18 7.0629× 10−18

MOR-NuSVR 7.0661× 10−18 7.0661× 10−18 7.0533× 10−18 7.0629× 10−18

MOR-GBoostR 7.0661× 10−18 1.9602× 10−9 1.8852× 10−15 7.0629× 10−18

MOR-XGBoostR 7.0661× 10−18 1.8349× 10−18 2.5288× 10−10 7.0629× 10−18

MOR-XGBoostRFR 7.0661× 10−18 7.0661× 10−18 7.0613× 10−18 7.0629× 10−18

MOR-BRR 7.0661× 10−18 7.0661× 10−18 7.0613× 10−18 7.0629× 10−18

NN 1.3613× 10−5 7.0661× 10−18 0.2385 1.8024× 10−13

k-NN5 9.6788× 10−7 7.0661× 10−18 0.7512 1.3559× 10−18

k-NN10 0.0013 7.0661× 10−18 0.0223 1.5532× 10−12

RFR 7.0661× 10−18 7.0661× 10−18 7.0549× 10−18 7.0629× 10−18

ETR 7.0661× 10−18 7.0645× 10−18 7.0645× 10−18 7.0629× 10−18

DTR 7.0661× 10−18 7.0661× 10−18 7.9652× 10−18 7.0629× 10−18

RR 3.9816× 10−15 7.0645× 10−18 7.0613× 10−18 7.0629× 10−18

RRCV 7.0661× 10−18 7.0645× 10−18 7.0597× 10−18 7.0613× 10−18

MTLCV 7.0661× 10−18 7.0629× 10−18 7.0597× 10−18 7.0613× 10−18

LLARS 7.0661× 10−18 7.0661× 10−18 7.0502× 10−18 7.0613× 10−18

LR 7.0661× 10−18 7.0645× 10−18 7.0581× 10−18 7.0613× 10−18

BR 7.0661× 10−18 7.0661× 10−18 4.9533× 10−15 7.0629× 10−18

MLPR 7.0661× 10−18 7.0661× 10−18 7.0645× 10−18 7.0629× 10−18

5. Conclusions

A generalized framework for the predictive modeling of manufacturing processes via
regression learning is presented and validated using an open-source data set for a multi-
stage continuous-flow manufacturing process in this work. Specifically, the practicality
of the framework is demonstrated by investigating several regression-based supervised
learning techniques using the given data set. The investigated methods are appraised
using the training time (TT), prediction speed (PS), predictive accuracy (R-squared statistic
(R2)), and mean squared error (MSE) obtained by each method over 50 independent
statistical runs for the predictive modeling of the two stages of the multi-stage continuous-
flow manufacturing process. The methods are then ranked inferentially according to
the statistics of their metrics in terms of TT, PS, R2, and mean squared error (MSE)
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obtained by each method over the 50 independent statistical runs. Based on the inference-
based rankings, DTR (decision tree regressor) and k-NN20 (k-nearest neighbour with 20
neighbors) have been identified as the most suitable regression learning techniques for the
predictive modeling of the first stage and second stage of the multi-stage continuous-flow
manufacturing process, respectively. These rankings are also verified statistically using a
Wilcoxon rank sum test to validate the inferences drawn. Even though the experiments
and outcomes in this work are not exhaustive due to the broad and stochastic nature of
regression learning techniques, they can adequately serve as a guide and benchmark for
the adoption and/or invention of regression learning-based paradigms in present-day
and future manufacturing environments. In the future, a real-world paradigm where
regression-based predictive models are employed on the fly in the manufacturing process
will be investigated.
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