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Abstract—Presently, artificial intelligence (AI) is playing a
leading role in our contemporary world via numerous appli-
cations. Despite its many advantages, analytical frameworks
highlighting the implications of AI applications are still evolving.
Particularly, in manufacturing and industrial production where
novel technologies are continuously being harnessed. Conse-
quently, AI and the implications of its applications have relatively
remained a grey area for many engineering managers who are
key players in the gravitation of manufacturing and industrial
production towards the fourth industrial revolution and more
recently, the fifth industrial revolution, generally termed as
Industry 4.0 (I4.0) and Industry 5.0 (I5.0), respectively. In this
study, the implications of AI applications in the general context
of manufacturing and industrial production, are presented to
provide insight for engineering managers. These implications are
discussed via PEST (political, economic, social, and technological)
considerations of the broad implications of the adoption of AI
techniques in manufacturing and industrial production systems.
A new engineering management model has not been proposed
in this paper. Rather, a discussion aimed at serving as a tool for
the appraisal of the implications of the general applications of
AI by engineering managers, who may not be AI specialists or
data science experts is presented.

I. INTRODUCTION

Presently, digital technologies assisted by artificial intelli-
gence (AI) techniques are at the core of many innovative
solutions across several sectors. These sectors include engi-
neering design, research and development, manufacturing, and
industrial production [1]–[4]. With a focus on manufacturing
and industrial production, a majority of new and emerging
AI-based paradigms are mainly aimed at the robust analysis
of data and elimination of repetitive jobs on the shop floor
for advanced process automation and holistic decision-making.
Generally, these fundamental aims can be viewed as the pro-
moters or proponents of present-day industrial revolutions (i.e.,
the fourth industrial revolution (I4.0) and the fifth industrial
revolution (I5.0)). Despite their interrelations in areas such
as the use of big data analytics and AI-driven devices and
systems, I4.0 tends to emphasize the digitization of manufac-
turing and industrial production to have better coordination
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between machines and information technology (IT), while
I5.0 tends to focus on the introduction of human intelligence
into I4.0 paradigms for closer collaboration between humans
and machines in present and future smart manufacturing and
industrial production systems [5].

AI is one of the emerging tools, perhaps, the most critical
tool being used to drive I4.0 and I5.0, to facilitate improved
efficiency and performance in manufacturing and industrial
production [4], [5]. This is because the core components
of I4.0 and I5.0, e.g., cyber-physical systems (CPSs), multi-
agent systems and technologies, intelligent automation, pre-
dictive maintenance, and virtual technologies, all rely on
AI techniques, especially AI-driven data-intensive algorithmic
frameworks [4], [5]. As a result, present-day engineering
managers are laden with not only an understanding of how
AI techniques can be applied but how to thoroughly appraise
managerial concerns that the applications of AI techniques
may pose to manufacturing and industrial production. In other
words, conventional engineering management in manufactur-
ing and industrial production which tends to focus on the
effective and efficient deployment of operational technologies
and operational management, transitions into the inclusion of
effective oversight of IT (information technology) operations
and efficient deployment of data science modeling techniques.
In this way, the span of control of engineering managers
must accommodate new key players, particularly, data sci-
ence practitioners. This is because AI techniques that can be
feasibly deployed for manufacturing and industrial production
to improve performance and ensure higher efficiency, often
rely on data-driven algorithmic and modeling architectures and
frameworks [6], [7].

To better understand why data science modeling techniques
and frameworks are essential for the application of AI in
manufacturing and industrial production, intelligent analytics
(a core component of I4.0 and I5.0) can be considered [5].
Intelligent analytics is made possible through the deployment
of AI techniques, particularly, machine learning techniques,
and it is generally implemented in the form of predictive
analytics [8]. It essentially describes a watchdog [8] – a service
that evaluates the modi operandi of real-world devices and
systems to ascertain their optimal functioning and utilization
through continuous modeling and analysis of data (delivered
mostly by sensors connected to machine tools and equipment)
with advanced embedded systems. Aside from intelligent ana-
lytics and other glaring added advantages such as efficient au-
tomation and improvement of process control that data-driven
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models introduce to manufacturing and industrial production,
extensive use of statistical and quantitative analysis, and
explanatory and predictive modeling (all components of data
analytics) also, is tantamount to fact-based management for
informed decision-making and action plans in manufacturing
and industrial production [9].

Despite the many advantages associated with the continuous
and growing application of AI techniques in manufacturing
and industrial production, specifically and generally [10], some
cons remain. For instance, an autonomous robot designed
and built for spray painting in car assembly plants may
have its traditional functions extended for expedited color
changeovers via AI techniques such as deep reinforcement
learning [11]. However, to utilize such an augmented robot
effectively and efficiently on the shop floor, typically, only one
specialist (e.g., a robotic engineer or robotic system operator)
is often required. This ultimately makes most, if not all, of the
direct labor roles and manual activities previously associated
with spray painting in the car assembly plants where such a
robot is installed and utilized redundant. This scenario typifies
one of the many scenarios that engineering managers may
have to deal with as AI-driven technological advancements
progressively orchestrate the full, and or, semi-automation
of activities and processes; specifically, on the shop floors
and generally, within manufacturing and industrial production
facilities.

Another typical case of how the application of AI techniques
can aid, and at the same time, present uncertainties in the
engineering management workflow within manufacturing and
industrial production facilities is detailed in [12]. In [12],
to better understand the profitability of brick manufacturing
relative to revenues from customers, clustering (a form of
unsupervised learning [13]) is used to evaluate and draw
inferences from manufacturing and sales datasets. Even though
the outcomes presented in [12] provided apt details that may
not have been otherwise available to the human decision-
makers (e.g., manufacturing and production engineers, system
operators, sales managers, and engineering managers) without
the intervention of the AI technique adopted, the extrapolation
of the outcomes from such an illative system is not always
clear-cut. As a result, the formulation of action plans and the
making of decisions based on such inferences may pose a
challenge for engineering managers who will be saddled with
this responsibility. This is understandable because engineering
managers are not data scientists or data science experts, per
se.

Compounding the challenge discussed above is the fact that
efficient methods for data collection are not straightforward
for many manufacturing and industrial production systems and
processes [14]. For example, temperature regulation and mon-
itoring of a manufacturing system or an industrial production
process can be carried out using purpose-built temperature
sensors. If it is required to build a database by generating
datasets over the operational life cycle of the temperature
sensors to undertake predictive maintenance as exemplified in
[15], a sampling time (i.e., time interval) must be decided
a priori for the generation of the data points or observations
(i.e., temperature measurements from the temperature sensors).

From a practical viewpoint, the time interval cannot be too
small because this will lead to the generation of an overly
large dataset, i.e., an over-complete representation of the
temperature data, that will require a lot of computational
resources for processing. In a similar vein, the time interval
cannot be too large because this will lead to the generation
of an overly sparse and less accurate dataset. Given this
scenario, it can be inferred that the choice of the time interval
introduces a trade-off and a very likely bias in the collection
of data from manufacturing systems or industrial processes
to drive data-driven AI implementation. Such a bias also
needs to be understood by engineering managers, particularly,
when techniques such as forecasting using time series analysis
or time-dependent trend analysis are being utilized as core
components of AI implementation.

Based on the discussions above, a study is undertaken in this
paper to present the pros and cons of applying AI techniques in
manufacturing and industrial production by providing insights
to better inform and guide engineering managers through the
use of a Political, Economic, Socio-cultural, and Technological
(PEST, also referred to as STEP in literature [16]) analytical
tool. Particularly, the following contributions are made:

• Discussion on the current political, economic, socio-
cultural, and technological trends in the application of
AI, including ethics and the risk assessment of AI-driven
product innovation.

• Summarized checklist-based PEST-informed guideline
for engineering managers to incorporate a knowledge
base of data science into their decision-making and action
planning for AI adoption.

Even though the discussion in this paper is not exhaustive,
it is envisaged that it will serve as a precursor to subsequent
generic and specific managerial discourses focused on the
ever-evolving application of AI techniques in manufacturing
and industrial production systems. The remainder of this paper
is organized as follows: Section 2.0 provides an overview of
PEST analysis, Section 3.0 discusses the implications (i.e.,
pros and cons) of applying AI techniques in manufacturing
and industrial production systems using a PEST analytical
framework, and the concluding remarks are given in Section
4.0.

II. PEST ANALYSIS

PEST analysis is a very popular methodology in manage-
ment [17]. Generally, it describes the macro-environmental
factors that are often considered in strategic management
appraisal [18], [19]. When the conduct of PEST analysis
is focused on business operations (e.g., manufacturing and
industrial production processes), then it becomes a crucial part
of the required evaluation for the implementation of strategic
goals such as the short-term or mid-term, or long-term or
recursive use of AI techniques in assisting manufacturing and
industrial production. As a result, PEST analysis provides
insight into the crucial factors that engineering managers must
take cognizance of to guarantee the reliability of managerial
decisions. Hence, its adoption in this paper.

The considerations stemming from the PEST analytical
framework viewpoint, which engineering managers ought to
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Fig. 1: Components of the PEST analytical framework.

address head-on to guarantee informed managerial decisions
on the road to AI adoption are illustrated via a visual
juxtaposition in Figure 1. It is envisaged that armed with
the foreknowledge of AI adoption scenarios, based on these
considerations, engineering managers are less likely to meet
a dead end or hit a roadblock as they lead the course of AI
adoption to facilitate I4.0 and I5.0. These considerations are
discussed in the next section.

A summarized guide is provided in Table I in the form
of nuggets that can facilitate PEST-informed AI adoption
by engineering managers, who oversee manufacturing and
industrial production. Even though the details in Table I are
not exhaustive due to the dynamic and evolving nature of AI
techniques that assist manufacturing and industrial production
operations and processes, and the plethora of perspectives
associated with them from different application viewpoints,
the actions mapped against the PEST considerations in Table
I provides the engineering manager with a good basis and
simple tool for evaluating the pros and cons of AI adoption
in manufacturing and industrial production systems.

III. DISCUSSION

The PEST considerations introduced in Section II and
summarized in Table I are further discussed as follows to
provide engineering managers with more insight:

A. Political considerations

Even though AI is increasingly impacting business activities
and technical operations in diverse industrial sectors and man-
agement disciplines, many of which directly or indirectly sway
present-day governance, a well-established unified framework
for the adoption and regulation of AI is still very much
embryonic [20]. A lot of concerns have been identified when
it comes to the disruptiveness of AI technologies and their
ability and increasing potential to subtly dictate and engineer

politically motivated outcomes [21]. For example, exploratory
data analysis and big data analytics which are both compo-
nents of AI have been deployed for targeted advertisements,
misinformation, and disinformation [22]. Other seemingly dis-
ruptive use cases of AI-based digital technologies on political
grounds include but are not limited to weaponized robots,
drones, and long-range missile defense systems [23], [24].
There are several other use cases of AI-driven technologies
that can inherently be swayed towards unethical “political”
applications; however, potential cyberattacks and cyberwars,
tend to be the most prevalent of all the politically motivated
disruptiveness associated with the adoption of AI technologies.

AI-based digital and emerging technologies are mostly
data-driven and implemented on software architectures. When
deployed on manufacturing and industrial production systems
such as supervisory control and data acquisition (SCADA)
systems, AI-driven paradigms and software applications can
become prone to malware such as Stuxnet [25]. Stuxnet and
other forms of malware built to target manufacturing and
industrial production systems are often politically motivated
[26]. This fact was reinforced recently when the largest
pipeline system in the United States of America (USA)
experienced a service disruption due to a cyberattack [27]
and the recent disruption of IT systems at multiple European
oil facilities hit by cyberattacks [28]. Handheld and mobile
devices such as tablets and personal digital assistants that now
offer similar or the same functionalities as human-machine
interfaces (HMIs) in manufacturing and industrial production
[29], are also prone to contemporary spyware [29].

The trends discussed above strongly indicate that a unified
framework in the ethical design, development, and deployment
of AI technologies is very essential. To ensure robustness and
reliability, such a unified framework must take into account
data privacy and security. This is very essential for AI applica-
tions involving proprietary manufacturing and industrial pro-
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TABLE I: Summarized guide for PEST-informed AI adoption in manufacturing and industrial production systems.

Factors Recommended Actions

1) P - political considerations • Conform current and potential AI applications to local, international, and organizational ethical and
regulatory laws and standards.

• Classify or categorize manufacturing and industrial production data required for current and potential AI
applications into proprietary and non-proprietary in accordance with data privacy and security standards
and regulations.

• Identify specific and potential use cases and interested political and non-political parties or stakeholders
for AI adoption.

• Develop generic and specific organizational terms of reference for AI adoption by considering both local
and global smart manufacturing and industrial production standards and align organizational AI-based
data-driven frameworks with both local and global data handling and management policies.

• For AI-generated products and services that are designated for non-civil applications such as military
applications, national and international security policies, and military standards must be strictly adhered
to throughout the production life cycle or the duration of service.

2) E - economic considerations • Critically evaluate return on investment for current and potential AI adoption.
• Develop holistic managerial models to handle disparities between economies relative to the geographical

location of manufacturing and industrial production assets and facilities designated for AI-based
augmentation.

• Promote inter-organizational and intra-organizational economic knowledge sharing with respect to AI
adoption.

• Ensure organizational inclination to collaborative AI to guarantee a balanced transition from traditional
workflows to AI-assisted workflows and to enhance operations and processes without overly impacting
the need for experts in the labor force and human interaction.

• Avoid the pitfalls of elitist markets through the classification of AI-generated products and services to
accommodate a wider range of customers and their product and service requirements.

3) S - socio-cultural considerations • Evaluate the potential impact of AI adoption on the restructuring and reorganization of both direct
and indirect workforce in terms of job creation and job replacement for manufacturing and industrial
production at the decision-making levels.

• Ascertain the availability and affordability of the required specialized workforce for AI adoption based
on demographics and location of industrial production and manufacturing facilities.

• Ensure that AI adoption is ethical and does not infringe upon societal rights and cultural norms and
values, as far as possible.

• Model and implement technology acquisition (TA) and technology transfer (TT) programmes to ensure
sensitization and readiness of the workforce for AI adoption.

• Continuously improve on the organizational TA and TT models using current data/information to
guarantee conformity to present socio-cultural realities.

4) T - technological considerations • Appraise all application-specific scenarios for current and potential AI adoption.
• Make a strong case for cybersecurity as traditional and legacy manufacturing and industrial production

systems metamorphose into CPSs.
• Conduct technological risk assessments to facilitate fail-safe methodologies prior to low-scale, medium-

scale, and large-scale AI adoption for manufacturing and industrial production.
• Ensure a good balance between minor investments in AI technologies to enhance operations and processes

and major investments in AI technologies to drive innovation and profitability.
• Understand and continuously evaluate the spectra of risk associated with generic and specific AI

implementation and formulate metrics for key risk indicators across the board for manufacturing and
industrial production activities.

duction data collection, visualization, and exploration. Even
though governments, bodies, and organizations are taking giant
strides in ensuring that the applications of AI technologies are
within the boundaries of societal laws, it is very challenging to
achieve robust monitoring and supervision of AI technologies
due to the convergence of technologies involved and the ability
of AI systems to evolve mostly through self-learning [30].

To buttress the point raised above, the example of au-
tonomous drones that can be used for product delivery [31] or
the bombing of target sites [32], depending on the payload and
the data fed into it, can be considered. This and several other
use cases validate the fact that the general ethical principle
of designing and developing AI technologies is relatively

the same. However, the data fed into AI systems to invoke
various use cases are application-specific. This is the primary
bottleneck of AI technologies. Who provides oversight into
the data to be used and the applications to be built? This
is a genuine query that engineering managers need to take
into account and investigate going forward, whilst making a
case for the adoption of AI technologies in manufacturing and
industrial production systems via data-driven paradigms. Some
recommendations are provided in Table I to guide engineering
managers in this regard.

It is also good to note that in the last decade, several
documents on AI ethics, policy, and governance have been
produced, with over 80 produced in the last five to six
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years alone. Still, it can be argued that the discourse on AI
ethics, policy, and governance remains a political hot potato
even today. This is mainly because, AI, in and of itself, is
always open to a plethora of views due to its inherent wide
and varied applications. In the context of manufacturing and
industrial production, the convergence of technologies, par-
ticularly, operational technology and information technology,
has always played a huge role in the efficient automation of
systems and processes on the shop floors and along production
lines. As a result, established standards and regulations are
in place to ensure proper installation, commissioning, op-
eration, maintenance, and decommissioning of conventional
industrial equipment and machine tools. With the introduction
of AI (data-driven paradigms and algorithmic frameworks)
into manufacturing and industrial production, new standards,
and regulations such as ISO/FDIS 23704 (currently under
development at the time of this research endeavor) [33] have
to be put in place to take into account changes such as the
transitioning of traditional machine tools and equipment into
cyber-physically controlled smart machine tools and systems.
It is the responsibility of engineering managers to be abreast
of these developments regarding AI adoption as recommended
in Table I.

B. Economic considerations
The current and future global economic impact of the

applications of AI techniques in manufacturing and industrial
production cannot be overstated. In [34], it is estimated that
AI may deliver an additional economic output of around US
$13 trillion by 2030. Interestingly, the projected time in [34]
coincides with the set year for the consolidation of the sustain-
able development goals (SDGs) [35]. A survey covering the
developed countries (USA, Finland, UK, Sweden, Netherlands,
Germany, Austria, France, Japan, Belgium, Spain, and Italy)
that jointly account for over 50% of the world’s economic
outputs hints that by 2035, AI applications will likely double
annual global economic growth rates [36]. The forecasted
growth rates in [36] are expected to trickle down to three major
areas: the increase in labor productivity by 40% as a result of
emerging and innovative technologies, the creation of a virtual
workforce capable of problem-solving and self-learning via
intelligent automation, and the convergence and diffusion of
innovation across multiple sectors to generate new revenue
streams. In seeming contrast to the projections in [34], it is
estimated that AI technologies will contribute modest gains
in the range of US $1.49 to US $2.95 trillion to the global
economic output from their direct and indirect positive impacts
on productivity, jobs, and gross domestic product (GDP) in
[37].

As a building block for the emerging digitization of manu-
facturing and industrial production (i.e., I4.0 and I5.0), tech-
nologies such as the Internet of Things (IoT), cloud computing,
3D printing, robotics, augmented reality, big data analytics,
and smart sensors may eventually see to the metamorpho-
sis of manufacturing and industrial production into a single
cyber-physical system (CPS) in which a convergence of the
internet, digital technologies and, manufacturing and indus-
trial production is realized [38]. Such systems which present

unprecedented levels of automation are bound to eliminate
(partially or totally), the requirement for direct manual labor
inputs, leading to higher productivity. In this way, AI tech-
nologies will complement and assist the existing workforce
of many industries and economies once the relatively huge
initial capital investments in intelligent machines, software,
and systems have been made. In other words, by adopting
the enhanced automation and augmented intelligence provided
by AI technologies, manufacturing, and industrial production
tasks will be performed better and more efficiently in a highly
reduced time.

Even though the economic advantages of adopting AI
technologies in manufacturing and industrial production are
obvious as discussed above, it is envisaged that many of the
economic advantages to be offered by AI technologies will
be maximized majorly by developed economies, particularly,
North America, Europe, and Asia [34]. As a result, developing
countries may only record very modest or little economic
advantages due to lower rates of adoption of AI technologies.
On this premise, it is intuitive to suggest that the varying levels
of adoption of AI technologies will further widen the economic
gap between advanced countries and lagging countries. This
is yet another issue that engineering managers who are re-
sponsible for manufacturing and industrial production plants
and facilities in both developed and developing countries must
take into cognizance by adopting and implementing relevant
AI policies and strategies that promote equity and continued
knowledge sharing via technology transfers (TTs) and technol-
ogy acquisitions (TAs) in the adoption of AI technologies. TT
and TA are further discussed in the next subsection, and some
recommendations are provided in Table I to guide engineering
managers in this regard.

C. Socio-cultural considerations

Applications of AI techniques for manufacturing and in-
dustrial production continue to raise concerns around ethics,
safety, and responsibility. Even though many of the AI tech-
niques deployed as manufacturing and industrial production
solutions do not necessarily operate fully autonomously, at
the risk of repetition, it is good to note that the advent of
AI has led to the automation of many manufacturing and
industrial production operations and processes. For example,
pick-place robot manipulators assisted by deep learning al-
gorithms can potentially replace nearly all manual pick-and-
place operations once carried out by humans on the shop
floor [39]. Consequently, many industries can reduce manual
labor costs by downsizing whilst retaining similar or higher
levels of productivity. However, this may not be the case
for industries located in less advanced societies, where both
the capital and expertise to deploy digital technologies and
AI solutions for manufacturing and industrial production are
unavailable. This begs the question of the availability and
affordability of AI solutions. The susceptibility of manufac-
turing and industrial production systems to failures or even
complete blackouts as a result of corrupt data or malicious
algorithms or even cyber-attacks is another critical issue that
raises valid security concerns. It is envisaged that advanced
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countries that have access to state-of-the-art technologies will
be better positioned to afford and deploy AI solutions while
mitigating and responding to perceived risks or threats in
comparison to developing or less advanced countries.

It must be noted that AI solutions are often software
solutions or programs built on abstraction layers that can
be interacted with via an application-layer interface (API)
[35], somewhat similar to the open systems interconnection
(OSI) model [40]. For typical manufacturing and industrial
production solutions, a reduced OSI model [41], is preferred
to ensure higher latency and faster computations as it is often
required in safety-critical applications [42]. A reduced OSI
model having a shorter stack is generally a simplification
from the data network architecture and design viewpoint;
however, this directly complicates the architecture and design
of software services [41]. This is primarily because specialized
workarounds will be required to achieve “higher layer-like”
functionalities when applications directly drive layers close to
the physical layer [41]. Such levels of expertise required for
specific manufacturing and industrial solutions could be rare
in many developing countries and even in some developed
countries [43]. This is another challenge in terms of the equity
of AI and its global outlook.

TA [44] and TT [45] models and programmes can ade-
quately bridge the above inherent gaps in AI adoption in many
developing countries and some advanced countries through a
clear understanding of how socio-cultural variations (particu-
larly, the level of specialized technical education of the popu-
lace) will impact planned TA and TT models and programmes.
Such TA and TT models and programmes will ultimately
yield a specialized AI-driven industrial workforce. Engineering
managers ought to pay close attention to these dynamics that
will ensue within the local and global industrial workforce
for the adoption and implementation of AI technologies in
manufacturing and industrial production. In this way, concerns
about uneven competition, technology readiness, ownership,
and responsibility, regarding AI adoption to drive business
value and returns, can be better understood and measured
multilaterally. Some recommendations are provided in Table I
to guide engineering managers in this regard.

D. Technological considerations
Several digital and emerging technologies are currently be-

ing deployed in many manufacturing and industrial production
processes. For example, the Coca-Cola company which is
arguably the largest beverage company in the world, recently
leveraged big data analytics to develop and market a new
flavor (Cherry Sprite) [46]. The data used for the research
and development was collected from the company’s state-of-
the-art of self-service soft drinks machines (fountains allowing
customers to blend their personalized drinks) [46]. There are
several other examples, such as the Coca-Cola case, where
industries have deployed unprecedented data-driven AI models
to rebrand their operations and products to drive innovation.
Recently, Siemens, added a neural processing unit (NPU)
to one of their robust programmable logic controller (PLC)
modules, the SIMATIC S7-1500 PLC, to have SIMATIC S7-
1500 TM NPU [47]. This augmentation allowed equipment

or machines used for packaging to better recognize complex
patterns through the hybridization of AI and vision tech-
nologies. Hence, improving the efficiency and robustness of
the packaging process. This made the SIMATIC S7-1500
TM NPU the automation and controls product of the year
in 2020 [47]. These use cases and several others reveal the
growing impact digital and emerging technologies continue to
have on manufacturing and industrial production systems and
processes.

Whilst several subjects and disciplines focused on digital
and emerging technologies are being incorporated into diverse
engineering curricula and specialized training programmes
[48], a clear rationale for making strong cases for best
practices and standards for AI applications still seems to
be lacking. This is primarily because the deployment of
these technologies is often application-specific (as mentioned
already in Section III-A), and there is no unified methodology
for their appraisal. For instance, to remotely monitor a piece of
industrial equipment via an online HMI, internet connectivity
is often required as demonstrated in [49], [50]. As a result,
the industrial equipment leaves a digital footprint that can
be viewed or accessed illegitimately, if resilient firewalls and
cybersecurity measures are not put into place. The tipping
point with this scenario could be a malware or spyware attack
on the industrial equipment as discussed in Section III-A.
Hence, the augmentation of manufacturing and industrial
production equipment via AI-based innovative technologies
may also increase the vulnerability and susceptibility of such
equipment to malicious attacks.

To avoid scenarios such as the one discussed above, engi-
neering managers must have an insight into the modi operandi,
vulnerabilities, and susceptibilities of AI-driven digital and
emerging technologies before employing or deploying them
for improved productivity and efficiency, and to drive inno-
vation. Even though there are no fool-proof technologies, a
thorough assessment of the vulnerabilities and susceptibilities
of AI-driven technologies designated for assisting manufactur-
ing and industrial production will equip engineering managers
with fail-safe methodologies to mitigate and or respond to
inherent and potential risks [51], that could emanate from
adopting such AI-driven digital and emerging technologies.
Also, since the application of AI techniques, in and of itself,
can not adequately quantify and qualify inherent and potential
risks associated with AI-driven technological innovations, ro-
bust methodologies such as risk matrices and real-win-worth
(RWW) screens can be adopted conjunctively to better manage
inherent and potential risks that such AI-driven technological
innovations may be fraught with [52]. Some recommendations
are provided in Table I to guide engineering managers in this
regard.

IV. CONCLUSION

In this paper, PEST considerations for adopting and im-
plementing AI in manufacturing and industrial production
systems are discussed to provide a broader knowledge to
engineering managers, to assist in the managerial decision-
making process. Specifically, emphasis has been laid on what
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queries or concerns engineering managers need to be wary
of if they are to make an informed case for the adoption of
AI-driven technologies to assist manufacturing and industrial
production. The paper also discusses the pros and cons of
applying AI techniques within industrial production and man-
ufacturing using some real-world manufacturing and industrial
production contexts.

REFERENCES

[1] X. Ren and Y. Chen, “How can artificial intelligence help with space
missions - a case study: Computational intelligence-assisted design of
space tether for payload orbital transfer under uncertainties,” IEEE
Access, vol. 7, pp. 161 449–161 458, 2019.

[2] C. Lu, J. Lyu, L. Zhang, A. Gong, Y. Fan, J. Yan, and X. Li, “Nuclear
power plants with artificial intelligence in industry 4.0 era: Top-level
design and current applications—a systemic review,” IEEE Access,
vol. 8, pp. 194 315–194 332, 2020.

[3] A. Canedo, P. Goyal, D. Huang, A. Pandey, and G. Quiros, “Arducode:
Predictive framework for automation engineering,” IEEE Transactions
on Automation Science and Engineering, vol. 18, no. 3, pp. 1417–1428,
2021.

[4] D. Mhlanga, “Artificial intelligence in the industry 4.0, and its impact
on poverty, innovation, infrastructure development, and the sustainable
development goals: Lessons from emerging economies?” Sustainability,
vol. 13, no. 11, p. 5788, 2021.

[5] M. Javaid and A. Haleem, “Critical components of industry 5.0 towards a
successful adoption in the field of manufacturing,” Journal of Industrial
Integration and Management, vol. 5, no. 03, pp. 327–348, 2020.

[6] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1,
pp. 17–27, 2017.

[7] G. N. Schroeder, C. Steinmetz, R. N. Rodrigues, R. V. B. Henriques,
A. Rettberg, and C. E. Pereira, “A methodology for digital twin modeling
and deployment for industry 4.0,” Proceedings of the IEEE, vol. 109,
no. 4, pp. 556–567, 2021.

[8] D. Djurdjanovic, J. Lee, and J. Ni, “Watchdog agent—an infotronics-
based prognostics approach for product performance degradation assess-
ment and prediction,” Advanced Engineering Informatics, vol. 17, no.
3-4, pp. 109–125, 2003.

[9] Y. M. Omar, M. Minoufekr, and P. Plapper, “Business analytics in manu-
facturing: Current trends, challenges and pathway to market leadership,”
Operations Research Perspectives, vol. 6, p. 100127, 2019.

[10] J. F. Arinez, Q. Chang, R. X. Gao, C. Xu, and J. Zhang, “Artificial intel-
ligence in advanced manufacturing: Current status and future outlook,”
Journal of Manufacturing Science and Engineering, vol. 142, no. 11,
2020.

[11] J. Leng, C. Jin, A. Vogl, and H. Liu, “Deep reinforcement learning
for a color-batching resequencing problem,” Journal of Manufacturing
Systems, vol. 56, pp. 175–187, 2020.

[12] M. S. Packianather, A. Davies, S. Harraden, S. Soman, and J. White,
“Data mining techniques applied to a manufacturing sme,” Procedia
CIRP, vol. 62, pp. 123–128, 2017.

[13] B. Balusamy, N. Abirami R, S. Kadry, and A. H. Gandomi, Cluster
Analysis, 2021, pp. 259–292.

[14] S. Singh and S. Singhal, “Implementation and analysis of the clustering
process in the enhancement of manufacturing productivity,” Journal of
King Saud University-Engineering Sciences, vol. 33, no. 7, pp. 482–490,
2021.

[15] K. Villalobos, J. Suykens, and A. Illarramendi, “A flexible alarm predic-
tion system for smart manufacturing scenarios following a forecaster–
analyzer approach,” Journal of Intelligent Manufacturing, vol. 32, no. 5,
pp. 1323–1344, 2021.

[16] G. C. A. Peng and M. B. Nunes, “Using pest analysis as a tool for
refining and focusing contexts for information systems research,” in
6th European conference on research methodology for business and
management studies, Lisbon, Portugal, 2007, pp. 229–236.

[17] T. Sammut-Bonnici and D. Galea, “Pest analysis,” 2014.
[18] J. K.-K. Ho, “Formulation of a systemic pest analysis for strategic

analysis,” European academic research, vol. 2, no. 5, pp. 6478–6492,
2014.

[19] M. K. Singh, H. Kumar, M. Gupta, and J. Madaan, “A glimpse of
sustainable electronics manufacturing for india: A study using pest-
swot analysis,” in Global Value Chains, Flexibility and Sustainability.
Springer, 2018, pp. 271–281.

[20] I. Ulnicane, “Artificial intelligence in the european union: Policy, ethics
and regulation,” in The Routledge Handbook of European Integrations.
Taylor & Francis, 2022.

[21] K. Abendroth-Dias, “What does resilience-building actually look like?
a study mapping the public policy challenges and socio-political im-
plications of the development of artificial intelligence for security and
defense in continental europe.” in 2021 Forum Europe’s 3rd Annual
Artificial Intelligence Conference, 2021, pp. 1–10.

[22] J. Isaak and M. J. Hanna, “User data privacy: Facebook, cambridge
analytica, and privacy protection,” Computer, vol. 51, no. 8, pp. 56–59,
2018.

[23] Y. Shapir, “Lessons from the iron dome,” Military and Strategic Affairs,
vol. 5, no. 1, pp. 81–94, 2013.

[24] I. G. Shaw, “Robot wars: Us empire and geopolitics in the robotic age,”
Security Dialogue, vol. 48, no. 5, pp. 451–470, 2017.

[25] J. Tian, R. Tan, X. Guan, Z. Xu, and T. Liu, “Moving target defense
approach to detecting stuxnet-like attacks,” IEEE Transactions on Smart
Grid, vol. 11, no. 1, pp. 291–300, 2020.

[26] C. Stevens, “Assembling cybersecurity: The politics and materiality
of technical malware reports and the case of stuxnet,” Contemporary
Security Policy, vol. 41, no. 1, pp. 129–152, 2020.

[27] W. Turton and K. Mehrotra. Cybersecurity: Hackers
breached colonial pipeline using compromised password.
[Online]. Available: https://www.bloomberg.com/news/articles/2021-06-
04/hackers-breached-colonial-pipeline-using-compromised-password

[28] J. Wittels, R. Graham, and R. Gallagher. Cyberattack-
ers target key fuel-distribution firms in europe. [On-
line]. Available: https://www.bloomberg.com/news/articles/2022-02-
02/cyberattack-on-europe-s-fuel-network-hits-germany-and-trade-hub

[29] B. McKernan. Israeli authorities inspect nso group
offices after pegasus revelations. [Online]. Avail-
able: https://www.theguardian.com/news/2021/jul/29/israeli-authorities-
inspect-nso-group-offices-after-pegasus-revelations

[30] M. Felderer and R. Ramler, “Quality assurance for ai-based systems:
Overview and challenges (introduction to interactive session),” in Inter-
national Conference on Software Quality. Springer, 2021, pp. 33–42.

[31] D. Bamburry, “Drones: Designed for product delivery,” Design Manage-
ment Review, vol. 26, no. 1, pp. 40–48, 2015.

[32] M. Ayamga, S. Akaba, and A. A. Nyaaba, “Multifaceted applicability of
drones: A review,” Technological Forecasting and Social Change, vol.
167, p. 120677, 2021.

[33] ISO - International Organization for Standardization. ISO/FDIS
23704-1 general requirements for cyber-physically controlled
smart machine tool systems (CPSMT). [Online]. Available:
https://www.iso.org/standard/76731.html

[34] M. Szczepanski, “Economic impacts of artificial intelligence (ai),”
European Parliamentary Research Service (PE 637.967), 2019.
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