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Abstract
This paper presents a framework for achieving machine learning (ML)‐assisted direction‐
of‐arrival (DoA) accuracy enhancement using a millimetre‐wave (mmWave) dynamic
aperture. The technique used for the enhanced DoA estimation accuracy leverages an
over‐sized lens‐loaded cavity antenna connected to a single RF chain in the physical layer
and a computational method in the computational layer of the framework. It is shown for
the first time that by introducing a reconfigurable mode‐mixing mechanism inside the
over‐sized lens‐loaded cavity hardware, a greater number of spatially orthogonal radiation
modes can be achieved giving rise to many cavity states. If the best cavity state is deter-
mined and selected by means of design exploration using a contemporary ML‐assisted
antenna optimisation method, the computational DoA estimation accuracy can be
improved. The mode‐mixing mechanism in this work is a randomly oriented metallic
scatterer located inside an over‐sized constant−ϵr lens‐loaded cavity, connected to a
stepper motor that is electronically controlled by inputs from the computational layer of
the presented framework. Measurement results in terms of near‐field radiation mode scans
are included in this study to verify and validate that the proposed ML‐assisted framework
enhances the DoA estimation accuracy. Moreover, this investigation simultaneously
provides a simplification in the physical layer implementation of mmWave radio hardware,
and DoA accuracy enhancement, which in turn lends itself favourably to the adoption of
the proposed framework for channel sounding in mmWave communication systems.
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1 | INTRODUCTION

Accurate, reliable, and fast, direction‐of‐arrival (DoA) estima-
tion is vital for multi‐user millimetre‐wave (mmW) communi-
cation systems to function properly. This is especially true for
communication channels with high mobility and shorter
coherence time, where constant high‐resolution channel
sounding is required. Standard channel sounding techniques
require an array of antennas connected to baseband processing
units, where DoA estimation algorithms such as MVDR,
MUSIC, ESPRIT and FT etc., are used [1–3]. Array‐based

DoA estimation techniques are well known and are widely
used in classical wireless communication systems, notably in
sub‐6 GHz 5G bands in recent times [4]. In mmWave
communication systems (including mmWave 5G), using fully
connected antenna arrays to enable mmWave DoA would
require multi‐fold hardware complexity; primarily due to, the
path loss due must be compensated by increasing the number
of antenna elements in the antenna arrays to achieve better
array gains. In the context of channel sounder, this increases
the number of RF chains [4, 5] and raises the hardware cost of
mmWave channel sounding, making it unaffordable or
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prohibitive for many cases. On other hand, using low‐
complexity hardware can compromise the angular discrimina-
tion of the DoA estimation. In addition, it negates the need for
multiple RF chains, which require a higher degree of thermal
considerations within the channel sounding hardware [6, 7].

The idea of using a single RF‐chain architecture for DoA
estimation is still in its infancy [8]. The practical implementa-
tion of this approach has been made possible by advances in
the field of computational microwave imaging [9–13]. The
concept has been verified in the literature via the reconstruc-
tion of the scene information and then compressing and
passing it over via a single RF chain using a frequency‐diverse
antenna, which faces the scene [10–14].

In this work, a structural modification of previously studied
DoA estimation approaches in Ref. [15, 16] is presented using
an ML‐based framework. Using this framework, it is shown for
the first time that the accuracy of computational DoA esti-
mation can be improved by converting simple lens‐loaded
cavity hardware into a lens‐loaded dynamic aperture that can
be optimised using a contemporary ML‐assisted optimisation
technique. To achieve this enhancement in DoA estimation
accuracy, the only modification required in the physical layer of
the proposed framework is the addition of a mechanically
controlled mode‐mixing scatterer placed inside the cavity. The
ML‐assisted optimisation and DoA estimation, both occur in
the computational layer of the framework.

By studying the lens‐loaded cavity radiation modes care-
fully and optimising them with respect to the given channel
condition (feedback through the computational layer),
enhanced accuracy in DoA estimation is feasible. The system‐
level operations of the presented framework are shown in the
block diagram in Figure 1. The benefit of placing a constant
−ϵr lens in front of the cavity is thoroughly discussed in a
previous investigation, Ref. [15], while this work focusses on
the framework that demonstrates how a single‐state lens‐
loaded cavity can be converted into a multi‐state cavity and
how an ML‐assisted optimisation of this multi‐state cavity can
positively impact the spatial‐temporal bases for enhanced ac-
curacy of DoA estimation.

The ML‐assisted optimisation technique used in the pro-
posed framework (Figure 1) is the first‐generation method in
the surrogate model‐assisted differential evolution for antenna
synthesis (SADEA) series of algorithms [17–21]. SADEA‐I is
adopted in this work as it has been shown to provide up to 20
times speed improvement in comparison to standard global
optimisation methods for antenna optimisation, while also

converging to better design solutions [22, 23]. The efficiency
improvement in SADEA‐I comes from a harmonious balance
between evolutionary search (i.e. revised differential evolution
(DE) operators) to explore the antenna's design space, and the
Gaussian Process (GP) ML‐based surrogate models for pre-
dicting antenna's performances [17]. The optimal co‐use of
evolutionary search and surrogate modelling in the kernel of
the optimisation is achieved by the surrogate model‐aware
evolutionary search (SMAS) framework [22] for surrogate
model management.

The contribution of this work is twofold. First, we propose
a novel lens‐loaded dynamic aperture structure that has the
capability to update its radiation mode states by as little as 1° of
mechanical rotation of a mode‐mixing scatterer. Second, we
propose a framework to optimise the lens‐loaded cavity states
using SADEA‐I to achieve an enhanced DoA estimation
accuracy.

2 | LENS‐LOADED DYNAMIC
APERTURE HARDWARE

The physical layer of the framework in Figure 1 comprises a
dynamic aperture constructed using a frequency‐diverse
chaotic cavity, a constant−ϵr lens, a mode‐mixing mechanism,
and a stepper motor. This lens‐loaded dynamic aperture is
connected to the computational layer of the framework via an
RF chain (not shown in Figure 1 for brevity). The structural
configuration of the dynamic lens‐loaded aperture is shown in
Figure 2a, where a metallic box is constructed to form a chaotic
cavity, a constant−ϵr lens is placed on one side of this metallic
box (facing the + z − axis), while the RF‐chain input/output is
on the opposite side of the lens (facing the − z − axis). Note
that the chaotic cavity and the lens structure are the same and
used previously in Ref. [15, 16]. A purposely created surface
with sub‐wavelength holes is connected to the chaotic cavity,
acting as a medium of electromagnetic (EM) energy coupling
between the chaotic cavity and the lens surface. The physical
dimensions of the lens structure, the cavity, and the location of
the RF‐chain input/output are shown in Figure 2a. Further
details around the construction of the chaotic cavity, the con-
stant−ϵr lens, and the rationale behind the selection of the
hardware and structural specifications can be found in Ref. [15].

The most important component of the physical layer in the
proposed framework, relevant to the investigation presented
here is the mode‐mixing mechanism from Figure 1. The mode‐
mixing mechanism is controlled by a stepper motor that re-
ceives feedback dynamically, from the computational layer of
the proposed framework. The mode‐mixing mechanism
comprises a mode‐mixing scatterer (a metallic plate) hanging
from the top, inside the cavity as shown in Figure 2a and b.
This randomly oriented metallic scatterer is responsible for
reflecting and mixing EM fields within the cavity. A few con-
siderations are important for the mode‐mixing scatterer. First,
it is important that the scatterer is not placed exactly at the
centre of the cavity since it is desirable to break the structural
symmetry inside the chaotic cavity along all three axes [24].F I GURE 1 System level block diagram
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Second, the mode‐mixing scatterer must not touch any of the
chaotic cavity wall, and this should be the case for all rotations
of the stepper motor (0° − 360°). Lastly, the mode‐mixing
scatterer needs to be firmly fixed from the stepper motor
shaft such that its location at any given angular rotation of the
stepper motor is fixed.

Figure 2b shows the hardware of the dynamic lens‐loaded
cavity. The metallic cavity structure is built using single‐sided
metallised substrate sheets. The curved surface with sub‐
wavelength holes is developed separately and soldered inside
the cavity such that a portion of the cavity structure hosts the
spherical constant−ϵr lens [15, 25]. The lens was developed

F I GURE 2 Frequency‐diverse over‐sized chaotic cavity with constant−ϵr lens having a mechanically rotatable mode‐mixing scatterer operating as a
dynamic lens‐loaded aperture as a (a) geometrical configuration of the dynamic lens‐loaded aperture. (b) Fabricated prototype placed in an anarchic chamber to
verify dynamic aperture operation via near‐field measurements
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using Rexolite material with the relative permittivity (ϵr) of 2.53
and loss tangent ( tan(δ)) of 0.00066. The spherical radius of
the sub‐wavelength hole is determined according to the prin-
ciple of Petzval curvature [26] that enables a gap between the
sub‐wavelength hole surface and the lens surface. Note that for
a constant–ϵr lens of this kind, the focal point of the impinging
plane wave lies outside of the lens surface. The sub‐wavelength
hole surface is exactly at the focal length. The structure is
developed to operate at a central frequency of 28 GHz over a
bandwidth from 27 to 29 GHz. At the rare side of the cavity,
an RF chain with the same bandwidth is connected via WR28
waveguide to the K‐type converter for EM signal input/
output. The mode‐mixing scatterer is rigidly connected to the
stepper motor shaft inserted within the cavity from the top.
The stepper motor is placed outside the cavity and is con-
nected to an Arduino UNO board responsible for generating
rotation angle commands using a microcontroller (Microchip
Atmel ATmega328P).

3 | DYNAMIC APERTURE OPERATION
FRAMEWORK

It has been shown previously that the DoA of an impinging
EM wave can be computed using a set of compressive
measurements in a frequency‐diverse structure [8]. This
concept has also been applied to a radiating cavity‐backed
wall with sub‐wavelength holes, as documented in the liter-
ature on computational imaging [10]. When an EM signal is
excited from the input of a frequency‐diverse cavity, it radi-
ates spatially orthogonal field radiation modes towards the
field‐of‐view (FoV) and the quasi‐randomness of these
modes is helpful in encoding the impinging plane wave in-
formation. The main purpose of a mode‐mixing scatterer is
to enhance this quasi‐randomness of the cavity by dynami-
cally updating the reflections of the EM energy trapped inside
the chaotic cavity. Note that the mode‐mixing method in this
work is similar to the methods described in Ref. [9, 11] and
the references therein. However, it is dynamic and unique
because the field radiation modes are observed by means of a
simple rotation of a mode‐mixing scatterer (Figure 2b)
controlled by a stepper motor for generating a new set of
quasi‐random radiation fields.

As a demonstration of the capability of the hardware
described above, let us consider the E‐field measured and
plotted at an observation plane which is 0.4 m away from the
cavity aperture (distance along z‐axis between the spherical
lens edge and the observation plane) at a single frequency
(28 GHz) when the only change that happens within the cavity
is the rotation of mode‐mixing scatterer from 1° to 2° and then
to 3°. A unique set of magnitude and phase masks are
observed for all three rotation conditions.(see Figure 3) This
feature is exploited to convert a chaotic cavity into a dynami-
cally reconfigurable chaotic cavity to achieve a much greater
number of field radiation modes than it is physically possible
when only a single static state of lens‐loaded cavity is consid-
ered. To determine the best lens‐loaded cavity state, hence, the

most suitable mode‐mixing scatterer angle of rotation, a
computational space is created by formulating a 1‐D optimi-
sation problem to find the best state of the lens‐loaded cavity
for a given channel. Although not verified in this study, it can
be argued that if the 1‐D optimisation problem is computa-
tionally fast enough, finding the best state of the lens‐loaded
cavity for a given channel, and the subsequent physical
implementation can be carried out in real‐time. Here, fast
enough means the computational time is at least faster than
one coherence time cycle of the mmWave channel.

Based on the above discussion, the framework proposed
for the dynamic lens‐loaded cavity optimisation considers the
wave‐chaotic transfer function. Considering that the field
projected by a single state of the lens‐loaded cavity on a
measurement plane is E(r, w, k), the impinging signal from
multiple sources on the lens‐loaded cavity is defined by P, and
the compressed measurements are g, then the relationship
between them can be written as follows [8, 15]:

gðwÞ ¼ ∫rEðr;w; kÞPðrÞdr þ n ð1Þ

where, n is the system noise, r defines the coordinates across
the aperture, w is the frequency and k is the current lens‐
loaded aperture state. Using (1), an estimate of the signal,
Pest, can be computed by means of matched‐filtering,
Pest = E†g, as shown in the computational layer of Figure 1.
Hence, a Fourier transform operation on Pest can produce the
DoA estimation pattern, from which the DoA information can
be retrieved using a peak‐finding algorithm. Moreover, the
DoA estimation can be evaluated using the iterative method
for one state of the lens‐loaded cavity [8].

Now, let us consider that the static (first state) of the lens‐
loaded cavity is updated using the mode‐mixing mechanism,
and the set of modes generated by the previous state, E(r, w,
k), are no longer valid. At this stage, the cavity is moved to a
new state with a new set of modes. In the computational layer
of the proposed framework, previously estimated P (Pest,M,1)
and their E(r, w, k) can be buffered for comparisons with the
new lens‐loaded cavity states (Pest,M,2) and their E(r, w, k) using
SADEA‐I. More explicitly, if Pstate is the database for the lens‐
loaded cavity state designs in the SADEA‐I‐based aperture
optimisation process and x in [0°, 360°] is any single lens‐
loaded cavity state design within Pstate, Pstate is initialised with
a population of α lens‐loaded cavity state designs (generated by
Latin Hypercube sampling method [27]) and their measured
field radiation modes on the reference plane.

After initialisation, in each iteration of SADEA‐I, child
solutions are generated by applying DE mutation and cross-
over operations to a fixed number (λ) of top‐ranked lens‐
loaded cavity state designs selected from Pstate. GP is then
used to construct surrogate models for each lens‐loaded cavity
state design in each child population using the nearest designs
(based on Euclidean distance) from Pstate and their measured
field radiation modes on the reference plane as training data
points.

The generated child solutions are prescreened using the
lower confidence bound method [28] to handle prediction
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uncertainty. The lower confidence bound values are then
ranked, and the best of them is simulated. The process is
repeated until a stopping criterion such as the maximum
number of objective function evaluations (Neval) is met. For
our investigations, we have typified the ML‐assisted optimi-
sation process using the measured data discussed in Section 4,
and the following settings have been used for SADEA‐I:
α = 20, λ = 20, and Neval = 150. All other algorithmic pa-
rameters for SADEA‐I are used according to Ref. [17].

4 | MEASUREMENTS, RESULTS AND
DISCUSSION

To evaluate the performance of the proposed ML‐assisted
DoA accuracy enhancement framework presented in the pre-
vious section, the lens‐loaded dynamic aperture was placed in a
near‐field anechoic chamber and connected to a signal gener-
ator. Considering the first static state, the lens‐loaded cavity
was excited by 41 single frequency signals from 27 to 29 GHz.

F I GURE 3 Experimental E‐field magnitude and phase recorded on a near‐field reference plane at a single radiation mode (i.e. 28 GHz) for three different
dynamic lens‐loaded cavity states. Colour bar is in dB scale (left column) and degree scale (right column). x and y are in metres. (a) State at 1° rotation. (b) State at
2° rotation. (c) State at 3° rotation
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The complex E‐field was measured in an observation plane of
length (along x‐axis) and width (along y‐axis) equals to 0.5 m
for all frequency samples. The total number of observation
points against each of the 41 frequency inputs was 71 � 71,
making a single lens‐loaded cavity state near‐field measure-
ments of 5041 � 41 for each cavity state for the entire
bandwidth. To avoid an extremely large dataset, the rotation of
the stepper motor was confined to the range 0° − 90° with a
step size of 1°, creating an overall measurement dataset size of
about 40 Gigabytes. The memory corresponding to one
angular measurement is ∼444 Megabytes per cavity state for
the entire bandwidth. The ML process in this case is data
driven, which means it uses the measured values, making it
computationally inexpensive. Moreover, the matched‐filter
problem (see Figure 1) took 2.6 ms, averaged over 10 re-
constructions on an Intel i7 CPU and 128 GB RAM machine.

4.1 | DoA estimation accuracy enhancement

To understand the extent of DoA estimation accuracy
enhancement, the DoA estimation patterns are examined for
three plane waves, originating from three different far‐field
sources and impinging on the lens‐loaded cavity as shown in
Figure 4. In Figure 5, a comparison is given between the DoA
estimation patterns using a non‐optimised state of the lens‐
loaded cavity (considered as the reference) and an optimised
state of the lens‐loaded cavity after passing through the ML‐
assisted DoA accuracy enhancement framework. From
Figure 5, the improved fidelity of the DoA pattern retrieved
using the optimised cavity is evident. Note that the DoA
estimation patterns are computed in a post‐processing stage to
mimic the computational layer using the measurement dataset.

Considering a single state of the lens‐loaded cavity of the
size shown in Figure 1a, based on the Q‐factor, a much larger
number of measurement modes are theoretically possible.
However, it is shown that the DoA estimation using a single
state of the cavity is still possible using only 41 measurement
modes within the 27–29 GHz bandwidth. This is realised by
relaxing the computational problem and restricting the di-
mensions of the unknowns to only consider the transverse
components of impinging plane wave vector. It is also
important to note that the power spectrum of the source field

impinging upon the lens‐loaded cavity is assumed to be con-
stant over the entire bandwidth of interest. This assumption is
valid since the fractional bandwidth under consideration
is relatively small (i.e. only 7% in this case) [8]. This assumption
is used only to simplify the mathematical model used for the
far‐field sources and is the same for both non‐optimised and
optimised cavity states.

A comparison between the ground truth DoA and the
estimated incident angles is given in Tables 1 and 2 for the
non‐optimised and optimised cavity states. It can be seen that
the DoA estimation has been possible for only two out of the
three impinging signals (Source 2 and Source 3) using the non‐
optimised cavity state while the estimation accuracy is also low
(see Figure 5a). On the other hand, under the same physical
conditions, just by controlling the rotation of the stepper
motor, estimation of all three sources has been possible after
reaching the optimised lens‐loaded cavity state. It can also be
observed that the DoA estimation is more accurate in Table 2
in comparison to the DoA estimation in Table 1, verifying the
operation of the proposed framework. It should be noted here
that the selection of three far‐field sources, as well as their
incident angles, is arbitrary, and a similar analysis can be carried
out using a different number of far‐field sources and incident
angles. It is worth mentioning that the DoA estimation accu-
racy of very closely spaced and overlapping sources is not
addressed in this investigation.

4.2 | Noise analysis

The DoA estimation study carried out in the previous sub-
section does not take noise into account; hence, the signal‐to‐
noise ratio (SNR) is considered infinite. To better replicate
practical wireless channels, noise is introduced in the mea-
surements such that the SNR level is brought down to practical
levels. To do this, additive white Gaussian noise (AWGN) is
introduced into the measurement dataset, while the DoA
estimation accuracy enhancement of the lens‐loaded cavity is
tested at varying SNR levels ranging from 0 dB to 20 dB. In
conformity to conventional signal processing routines, the
probability density function of the introduced AWGN is equal
to that of standard normal distribution and it is characterised
by a bell‐shaped curve with a mean value of null, standard

F I GURE 4 Illustration of the experimental
setup to investigate the DoA estimation accuracy
enhancement
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deviation of unity and total area (under the curve) of unity.
Individual DoA estimations are then performed for the non‐
optimised and the optimised states of the lens‐loaded cavity
in the presence of three simultaneous far‐field sources, having
ground truth DoA same as the ones shown in Tables 1 and 2.
The estimated DoA patterns are presented in Figure 6 and
Figure 7 for non‐optimised and optimised lens‐loaded cavity
states, respectively.

It can be observed that using a non‐optimised cavity state,
the retrieval of DoA estimation patterns for the impinging
signals from a maximum of only two far‐field sources is
possible at high SNR levels (20 and 10 dB), while the DoA
estimation is not clear for low SNR levels (5 and 0 dB). This
also confirms that even at high SNR levels, the lost DoA in-
formation has not been successfully retrieved considering all

three far‐field sources. On the other hand, the optimised lens‐
loaded cavity state can accurately retrieve the DoA of all three
far‐field sources at SNR levels of 5 dB, 10 and 20 dB. DoA
estimation has only been impossible for one of the far‐field
sources at SNR = 0 dB, showing that even the optimised
lens‐loaded cavity state cannot compensate for the loss of
signal due to high channel noise levels. Nevertheless, Figure 7
confirms that the proposed DoA estimation accuracy
enhancement framework operates well in practical noise
conditions.

4.3 | Effect of phase synchronisation

For the studies presented in Sections 4.1 and 4.2, it was
assumed that the far‐field sources share the same phase
reference. In practical applications, far‐field sources for DoA
estimation do not necessarily need to be phase‐synchronised.
In other words, the phase coherence between the individual
sources can be defined on an arbitrary basis, and the presented
technique should be applicable to such scenarios to be
considered useful for practical applications. To this end, we re‐
study the DoA estimation scenario, originally presented in
Figure 5b, with the optimised cavity. In this new study, we
consider two scenarios: (a) each far‐field source is assigned to
an individual, arbitrarily defined phase reference, and (b) the
far‐field sources share the same phase reference. For the
phase‐asynchronous case, the phase references of source 1,
source 2 and source 3 are varied by π/6 radians, π/4 radians,
and π/3 radians, respectively. It should be noted here that the
selection of these reference phase variation values is done on
an arbitrary basis, and a similar analysis can be carried out for
different phase reference values without loss of generality. The
retrieved DoA patterns are shown in Figure 8.

As can be seen in Figure 8, breaking the phase‐
synchronisation between the far‐field sources does not alter
the accuracy of the presented technique. This is because the
technique is sensitive to the relative phase pattern of the

TABLE 1 DoA using non‐optimised lens‐loaded dynamic aperture

Incident angle Incident angle
(Ground truth) (Estimated)

Source 1 θ1 = −30°, ϕ1 = −15° Not detected

Source 2 θ2 = −20°, ϕ2 = −20° θ2,est = −20.7°, ϕ2,est = −21°

Source 3 θ3 = 30°, ϕ3 = −25° θ3,est = 30.1°, ϕ3,est = −29.5°

TABLE 2 DoA using optimised lens‐loaded dynamic aperture

Incident angle Incident angle
(Ground truth) (Estimated)

Source 1 θ1 = −30°, ϕ1 = −15° θ1,est = −30.7°, ϕ1,est = −14.8°

Source 2 θ2 = −20°, ϕ2 = −20° θ2,est = −20.8°, ϕ2,est = −20.7°

Source 3 θ3 = 30°, ϕ3 = −25° θ3,est = 30.3°, ϕ3,est = −25.1°

F I GURE 5 Reconstructed DoA estimation patterns (normalised;
colour bar is in dB scale) for three sources, when dynamic lens‐loaded
cavity is: (a) Not optimised. (b) Optimised
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impinging signals projected onto the cavity aperture, which is
controlled by the incident angles, (θ, ϕ) [8, 15], rather than the
absolute phase offsets that can be added to the projected field
patterns.

4.4 | Impact of rotation resolution

In this subsection, the impact of the stepper motor's rota-
tion resolution on the optimisation time and the DoA
estimation accuracy is examined. The algorithm run‐time is
subjective, depending upon the computational power of the
platform to be used at the computational layer of Figure 1.
Similarly, the time required for the mode‐mixing scatterer to
get to a new state is also subject to the physical layer
hardware specifications (cavity, stepper motor, microcon-
troller etc.). Therefore, a good way to infer the optimisation
speed is to use the number of iterations required by the
SADEA‐I to converge to an optimised cavity state. Figure 9
presents a comparison between the number of iterations
required when the lens‐loaded cavity is separately optimised
with a stepper motor rotation resolution of 1°, 2°, 4° and
8°, respectively. The minimum average correlation coefficient
is used as the criterion to compare the performance of
resulting cavity states, since it is inversely proportional to the
DoA estimation accuracy (see Ref. [15] for proof). Each
point along the x‐axis in Figure 9 represents a distinct cavity

state, while the values on the y‐axis represent the correlation
coefficient and minimum correlation coefficient computed
using all 41 measured field radiation modes for that
particular cavity state.

When the optimisation framework is operational, the
computational layer keeps updating the state of the cavity
and the minimum correlation coefficient value is computed
for every update. If the computed correlation coefficient
for the current cavity state is better than the previously
computed value, the algorithm supersedes the previous
best; otherwise, it keeps the previous best value. The al-
gorithm stops after reaching the maximum allowable
number of iterations, defining the final minimum correla-
tion coefficient value for the optimised cavity state. The
results in Figure 9 typify the trade‐off between the better
cavity state (better DoA estimation) and the rotation res-
olution (faster optimisation). When the step size is 1° is
used, the algorithm takes 20 + iterations, to provide an
optimised cavity state. The number of iterations decreases
to 8 + , meaning faster convergence of the optimisation
framework, but at a cost of a higher correlation coefficient
value. Intuitively, a larger angular resolution for varying the
stepper motor means a reduced design search space and a
somewhat low‐cost implementation (in terms of computa-
tional overhead) and vice versa. However, sparse data
(based on a larger step size or angular resolution) also
means that the accuracy of the entire process is lowered.

F I GURE 6 Retrieved DoA estimation patterns (normalised; colour bar is in dB scale) of three simultaneous sources using the initial state of the lens‐loaded
cavity at varying noise levels when: (a) SNR = 0 dB. (b) SNR = 5 dB. (c) SNR = 10 dB. (d) SNR = 20 dB

F I GURE 7 Retrieved DoA estimation patterns (normalised; colour bar is in dB scale) of three simultaneous sources using the optimised state of the lens‐
loaded cavity at varying noise levels when: (a) SNR = 0 dB. (b) SNR = 5 dB. (c) SNR = 10 dB. (d) SNR = 20 dB
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This expected degradation is not observed for angular
resolutions of 2° and 4°.

Now let us compare the DoA estimation patterns
computed using non‐optimised cavity states, and cavity states
separately optimised using 1°, 2°, and 8° of the stepper
motor rotation resolution. The results are presented in
Figure 10. The patterns reveal that the DoA estimation ac-
curacy is better when 1° rotation resolution is used; however,
the time to optimise is the highest (see Figure 9). It can also
be seen that the DoA estimation using cavity states that are
optimised using 2° rotation resolution is also accurate;
however, the number of iterations required to get to this state
is almost halved. These two results typify a very useful trade‐
off between the DoA estimation accuracy, and the time
required to achieve an optimised solution, leading to a pos-
sibility of load balancing between the physical layer and the
computational layer (Figure 1) by carefully selecting the
rotation resolution.

4.5 | Singular value decomposition analysis

When applied to antenna‐radiated field modes, the singular
value decomposition (SVD) technique can constitute a mea-
sure of the diversity of the field patterns radiated by any single
state of the lens‐loaded cavity while facing the FoV [6, 8]. The
optimisation framework presented in the previous section
improves the orthogonality between the radiated field modes
of neighbouring frequencies. This can be observed from the
SVD contour shown in Figure 11 for a comparison between
the non‐optimised and the optimised lens‐loaded cavity states
at multiple rotation resolutions. For this analysis, considering
σmax to be the maximum singular value and σmin to be the
minimum singular value, the condition number for the non‐
optimised lens‐loaded cavity state can be deduced as: σmax/
σmin = 35.83, while for the optimised state (1° step size) it is:
σmax/σmin = 16.03. In other words, the condition number of
the optimised cavity is 55.2% smaller than the non‐optimised
cavity. Note that for an ideal case (i.e. best‐case scenario),
the condition number is unity (i.e. σmax/σmin = 1). Therefore, it
can be said that the optimised cavity state using any rotation
resolution, including 2° and 8° steps, is better when compared
to the non‐optimised cavity state, confirming the utility of the
proposed ML‐assisted DoA estimation enhancement
framework.

5 | CONCLUSION

This paper presented an ML‐assisted optimisation framework
implemented on a dynamic lens‐loaded aperture‐based system
for the purpose of DoA estimation. The presented hardware
is unique in that it has the capability to improve itself based
on the ML‐assisted optimisation parameters. The system
consists of a mode‐mixing scatterer, strategically placed inside
a lens‐loaded wave chaotic cavity, which can be controlled by

F I GURE 8 Reconstructed DoA estimation patterns (normalised;
colour bar is in dB scale) for three sources, when dynamic lens‐loaded
cavity is: (a) Far‐field sources have arbitrarily defined phase references
(phase‐asynchronous). (b) Far‐field sources share the same phase reference
(phase‐synchronous)

F I GURE 9 Trends for the SADEA‐I optimisation
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a stepper motor to have any orientation between 0° − 360°
with a step size ranging from as little as 1° to 8°. It was
shown that the mode‐mixing scatterer has the capability of
updating the state of the lens‐loaded cavity, turning it into a
dynamic aperture just by updating its angle of rotation. The
cavity structure, and its extension, the dynamic aperture is
sensitive to any change within the cavity and creates a unique
set of quasi‐random radiation modes. The optimum state of
the lens‐loaded cavity can be selected by using SADEA‐I,
eventually leading to enhanced DoA estimation of multiple
impinging signals. The framework was thoroughly tested and
verified using extensive experimental datasets. DoA estima-
tion accuracy enhancement was confirmed by studying DoA
estimation patterns in the absence as well as in the presence
of noise. Lastly, the mathematical conditioning improvement
using the proposed ML‐assisted framework was verified by
comparing the singular values of multiple optimised and non‐
optimised cavity states. The future direction for this work will
include investigating DoA estimation performance using non
phase‐synchronised signal sources and ML‐assisted optimi-
sation of the lens‐loaded cavity based on the channel state
information.

ACKNOWLEDGEMENTS
This work was in part supported by the UK Engineering and
Physical Sciences Research Council (EPSRC), under grant EP/
S007954/1 and EP/P000673/1, and by the Leverhulme Trust
under Research Leadership Award RL‐2019‐019.

CONFLICT OF INTEREST STATEMENT
There is no conflict of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

ORCID
Muhammad Ali Babar Abbasi https://orcid.org/0000-
0002-1283-4614
Okan Yurduseven https://orcid.org/0000-0002-0242-3029

REFERENCES
1. Gao, F., Gershman, A.B., Gershman, A.B.: A generalised ESPRIT

approach to direction‐of‐arrival estimation. IEEE Signal Process. Lett.
12, 254–257 (2005)

F I GURE 1 0 DoA estimation patterns using non‐optimised and optimised lens‐loaded cavity states with different stepper motor rotation resolutions.
Colour bar is in dB scale. (a) Non‐optimised, (b) Optimised; 8° rotation resolution, (c) Optimised; 2° rotation resolution and (d) Optimised; 1° rotation
resolution

F I GURE 1 1 Comparison between measured
singular values of the initial state and the optimised
states of the dynamic lens‐loaded cavity

314 - ABBASI ET AL.

 17518733, 2022, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/m

ia2.12257 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [14/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-1283-4614
https://orcid.org/0000-0002-1283-4614
https://orcid.org/0000-0002-1283-4614
https://orcid.org/0000-0002-0242-3029
https://orcid.org/0000-0002-0242-3029
https://orcid.org/0000-0002-1283-4614
https://orcid.org/0000-0002-0242-3029


2. Zhang, X., et al.: Reduced‐complexity capon for direction of arrival
estimation in a monostatic multiple‐input multiple‐output radar. IET
Radar, Sonar Navig. 6, 796–801 (2012)

3. Mohanna, M., et al.: Optimisation of music algorithm for angle of arrival
estimation in wireless communications. NRIAG J. Astron. Geophys. 2,
116–124 (2013)

4. Bas, C.U., et al.: Real‐time millimetre‐wave MIMO channel sounder for
dynamic directional measurements. IEEE Trans. Veh. Technol. 68(9),
8775–8789 (2019)

5. Bjornson, E., et al.: Massive MIMO in sub‐6 GHz and mmWave:
physical, practical, and use‐case differences. IEEE Wireless Commun.
26(2), 100–108 (2019)

6. Aslan, Y., et al.: Thermal‐aware synthesis of 5G base station antenna
arrays: an overview and a sparsity‐based approach. IEEE Access. 6,
58868–58882 (2018)

7. Chiu, C.‐P.: Heat sink for 5G massive antenna array and methods of
assembling same. U.S. Patent No. 10. 320, 051 (2019)

8. Yurduseven, O., et al.: Frequency‐diverse computational direction of
arrival estimation technique. Sci. Rep. 9(1), 1–12 (2019)

9. Yurduseven, O., et al.: Computational microwave imaging using 3D
printed conductive polymer frequency‐diverse metasurface antennas.
IET Microw., Antennas Propag. 11(14), 1962–1969 (2017)

10. Zhao, M., et al.: Frequency‐diverse bunching metamaterial antenna for
coincidence imaging. Materials. 12(11)1817 (2019)

11. Fromenteze, T., et al.: Computational imaging using a mode‐mixing
cavity at microwave frequencies. Appl. Phys. Lett. 106(19), 194104 (2015)

12. Yurduseven, O., et al.: Lens‐loaded coded aperture with increased in-
formation capacity for computational microwave imaging. Rem. Sens.
12(9), 1531 (2020)

13. Hoang, T.V., et al.: Spatial diversity improvement in frequency‐diverse
computational imaging with a multi‐port antenna. Results Phys. 22,
103906 (2021)

14. Fromenteze, T., et al.: Computational polarimetric microwave imaging.
Optics expres. 25(22), 27488–27505 (2017)

15. Abbasi, M.A.B., et al.: Frequency‐diverse multimode millimetre‐wave
constant‐ϵr lens‐loaded cavity. Sci. Rep. 10(1), 1–12 (2020)

16. Abbasi, M.A.B., Fusco, V.F., Yurduseven, O.: Millimetre‐Wave channel
sounding technique using oversized lens–loaded cavity. In: 2021 Proc.
15th European Conf. On Ant. Propag. (EuCAP). Düsseldorf, Germany
(2021)

17. Liu, B., et al.: An efficient method for antenna design optimisation based
on evolutionary computation and machine learning techniques. IEEE
Trans. Antenn. Propag. 62(1), 7–18 (2013)

18. Liu, B., et al.: Efficient global optimisation of microwave antennas based
on a parallel surrogate model‐assisted evolutionary algorithm. IET
Microw., Antennas Propag. 13(2), 149–155 (2019)

19. Liu, B., Koziel, S., Ali, N.: SADEA‐II: a generalised method for efficient
global optimisation of antenna design. Journal of Computational Design
and Engineering. 4(2), 86–97 (2017)

20. Akinsolu, M.O., et al.: A parallel surrogate model assisted evolutionary
algorithm for electromagnetic design optimization. IEEE Transactions
on Emerging Topics in Computational Intelligence. 3(2), 93–105
(2019)

21. Liu, B., et al.: An efficient method for complex antenna design based on a
self‐adaptive surrogate model‐assisted optimisation technique. IEEE
Trans. Antenn. Propag. 69(4), 2302–2315 (2021)

22. Grout, V., et al.: Software solutions for antenna design exploration: a
comparison of packages, tools, techniques, and algorithms for various
design challenges. IEEE Antenn. Propag. Mag. 61(3), 48–59 (2019)

23. Liu, B., Zhang, Q., Gielen, G.G.E.: A Gaussian process surrogate
model assisted evolutionary algorithm for medium scale expensive
optimisation problems. IEEE Trans. Evol. Comput. 18(2), 180–192
(2013)

24. Fusco, V., Yurduseven, O.: Ghost Image Removal Using Physical Layer
Spatial Asymmetry in Frequency‐Diverse Computational Imaging. 15th
European Conference on Antennas and Propagation (EuCAP). IEEE
(2021)

25. AbbasiBabar, M.A., et al.: Constant‐ϵr lens beamformer for low‐
complexity millimetre‐wave hybrid MIMO. IEEE Trans. Microw.
Theor. Tech. 67(7), 2894–2903 (2019)

26. Katz, M.: Introduction to Geometrical Optics. World scientific (2002)
27. Stein, M.: Large sample properties of simulations using Latin hypercube

sampling. Technometrics. 29(2), 143–151 (1987)
28. Dennis, J.E., Torczon, V.: Managing approximation models in optimi-

sation. Multidisciplinary design optimization: State‐of‐the‐art. 5, 330–347
(1997)

How to cite this article: Abbasi, M.A.B., et al.:
Machine learning‐assisted direction‐of‐arrival accuracy
enhancement technique using oversized lens‐loaded
cavity. IET Microw. Antennas Propag. 16(6), 305–315
(2022). https://doi.org/10.1049/mia2.12257

ABBASI ET AL. - 315

 17518733, 2022, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/m

ia2.12257 by W
elsh A

ssem
bly G

overnm
ent, W

iley O
nline L

ibrary on [14/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1049/mia2.12257

	Journal Article cover sheet
	IET Microwaves Antenna   Prop - 2022 - Abbasi - Machine learning‐assisted direction‐of‐arrival accuracy enhancement
	Machine learning‐assisted direction‐of‐arrival accuracy enhancement technique using oversized lens‐loaded cavity
	1 | INTRODUCTION
	2 | LENS‐LOADED DYNAMIC APERTURE HARDWARE
	3 | DYNAMIC APERTURE OPERATION FRAMEWORK
	4 | MEASUREMENTS, RESULTS AND DISCUSSION
	4.1 | DoA estimation accuracy enhancement
	4.2 | Noise analysis
	4.3 | Effect of phase synchronisation
	4.4 | Impact of rotation resolution
	4.5 | Singular value decomposition analysis

	5 | CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT



