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Abstract— Gaussian process (GP) is a very popular machine
learning method for online surrogate-model-assisted antenna
design optimization. Despite many successes, two improvements
are important for the GP-based antenna global optimization
methods, including: 1) the convergence speed (i.e., the num-
ber of necessary electromagnetic (EM) simulations to obtain a
high-performance design) and 2) the GP model training cost
when there are several tens of design variables and/or speci-
fications. In both aspects, the state-of-the-art GP-based meth-
ods show practical but not desirable performance. Therefore,
a new method, called the self-adaptive Bayesian neural network
surrogate-model-assisted differential evolution (DE) for antenna
optimization (SB-SADEA), is presented in this article. The key
innovations include: 1) the introduction of the Bayesian neural
network (BNN)-based antenna surrogate modeling method into
this research area, replacing GP modeling, and 2) a bespoke
self-adaptive lower confidence bound (LCB) method for antenna
design landscape making use of the BNN-based antenna surrogate
model. The performance of SB-SADEA is demonstrated by two
challenging design cases, showing considerable improvement in
terms of both convergence speed and machine learning cost
compared with the state-of-the-art GP-based antenna global
optimization methods.

Index Terms— Antenna design, antenna optimization, Bayesian
neural network (BNN), computationally expensive optimization,
differential evolution (DE), lower confidence bound (LCB), sur-
rogate modeling.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) are widely used in
antenna design [1], [2]. Due to their ability to jump out of

local optima, without the need of an initial design and gener-
ality, they are showing advantages for many design cases. The
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differential evolution (DE) [3] and particle swarm optimization
(PSO) [4] algorithms are arguably playing the leading role in
EA-driven antenna design [2], [5], [6]. However, considering
full-wave electromagnetic (EM) simulations are often needed
to obtain accurate performance of a candidate design, and EAs
often need tens of thousands of such EM simulations to obtain
the optimal design, the optimization time can be prohibitive.

Therefore, surrogate models, constructed by the machine
learning techniques, are trained to approximate the antenna
performance obtained by EM simulations [7]. Hence, in the
optimization process, many computationally expensive EM
simulations can be replaced by computationally cheap surro-
gate model predictions. The optimization time can, therefore,
be largely reduced. Note that this research focuses on online
surrogate-model-assisted antenna global optimization, where
the surrogate model keeps being updated in each iteration.

Three critical factors for online surrogate-model-assisted
antenna global optimization are the surrogate modeling
method, the search operators, and the model management
method. The surrogate modeling method refers to the machine
learning core and its associated bespoke operators for anten-
nas. Search operators refer to the optimization engine. The
model management method refers to the framework mak-
ing surrogate modeling and optimization work harmoniously.
Since prediction uncertainty is unavoidable, which may lead
to wrong convergence, identifying high potential candidate
designs under uncertainty to maintain correct convergence and
optimal update of the surrogate model are the goals of model
management. The three factors are strongly interconnected.

Among online antenna global optimization methods,
the surrogate-model-assisted DE for antenna optimization
(SADEA) series [8], [9], [10], [11] is one of the state-of-the-
art approaches. For design cases with fewer than 20 design
variables and a few specifications, the latest P-SADEA
method [10], [12] integrates three DE mutation operators with
different characteristics, which are organized by a new model
management method. It shows success in challenging antenna
cases where DE and PSO fail to obtain feasible designs,
e.g., [13] while improving the speed by up to 30 times without
parallel computing. For antenna cases with several tens of
design variables and/or specifications, machine learning cost
becomes a new challenge, which may be even higher than
the EM simulation cost [11]. To the best of our knowledge,
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the TR-SADEA method first addresses this challenge by a
Gaussian process (GP) model sharing method to reduce the
necessary number of GP models and a self-adaptive surrogate-
model-assisted local optimization scheme to improve the con-
vergence speed. It shows success for complex base station
antennas [11].

In the evolution of the SADEA series, the main innovations
locate in the model management method and the search
operators. Considering the surrogate modeling method, to the
best of our knowledge, not only the SADEA series but also
GP machine learning is used by most online state-of-the-art
surrogate-model-assisted antenna optimization methods [14],
[15], [16], [17]. For the often highly multimodal antenna
design landscape [10], a strong machine learning method is
essential. GP stands out due to its strong learning ability, with
very few empirical parameters, and can provide a rigorous
prediction uncertainty for each candidate design.

However, GP has its drawbacks, i.e., its training cost [18].
GP’s training time grows cubically with the number of training
data points, which is highly related to the number of design
variables and specifications. Considering normal desktop com-
puters (e.g., Intel i7 3.0 GHz CPU), for antennas with a
few design variables, GP training time is short. However,
for antennas with more than 20 and even around 50 design
variables with more than 10 specifications, TR-SADEA uses
one to two days for GP model training [11] (note that 90% of
the expected training time compared with standard SADEA is
reduced). This training cost is practical but not desirable.

For design cases with very challenging specifications,
e.g., [13], most surrogate-model-assisted antenna global opti-
mization methods still need a few thousand EM simulations,
sometimes costing more than a week. Hence, much space is
left for improving the convergence speed (i.e., the necessary
number of EM simulations). The long GP training time
restricts the number of surrogate models to be built, which
affects the convergence speed. For example, an idea like deep
supervision [19], [20] in image recognition is suitable for many
antenna cases to improve the convergence speed at the cost
of training more surrogate models. However, considering GP
modeling time, it is difficult to be used for many cases whose
number of design variables/specifications is not small.

Owing to this, this research aims to seek a new machine
learning core to replace the GP-based antenna modeling and
propose a method using the new surrogate model. The goal
is to considerably improve both the convergence speed and
training cost and provide a universal method for antennas
with various numbers of design variables and specifications.
Hence, a new method, called the self-adaptive Bayesian neural
network surrogate-model-assisted DE for antenna optimization
(SB-SADEA), is proposed. The key innovations include: 1)
the introduction of the Bayesian neural network (BNN)-based
antenna surrogate modeling method into this area to replace
GP and 2) a bespoke self-adaptive lower confidence bound
(LCB) method for antenna design landscape making use of
the BNN results as a part of model management.

The remainder of this article is organized as follows.
Section II presents the background knowledge. Section III
elaborates on the SB-SADEA method. Section IV presents

the advantages of SB-SADEA using a compact ultrawideband
(UWB) monopole antenna and a compact multiband 5G mm-
wave antenna, both with challenging specifications. The con-
cluding remarks are provided in Section V.

II. BACKGROUND KNOWLEDGE

A. Online Surrogate-Model-Assisted Antenna Design
Optimization

Machine learning is attracting much attention in EM design
recently [21], and surrogate-model-assisted antenna optimiza-
tion is an essential part, which can be classified into offline and
online. In the offline methods, a high-quality surrogate model
is first built and there are no or few updates of the surrogate
model in the optimization process [22]. The advantage for the
offline methods is that the resulting effective antenna surrogate
model is useful on many occasions, e.g., antenna circuit
co-design and multiobjective Pareto optimization, showing
excellent results [14], [23]. Particularly, some state-of-the-
art machine learning techniques are proposed for EM device
modeling and inverse design (e.g., Fourier subspace-based
deep learning [23]) in recent years, addressing important
bottlenecks.

The limitation for the offline methods is the “curse of
dimensionality” [24]. When there are more than a few design
variables and/or the modeling range is not narrow, the neces-
sary number of EM simulations needed for preparing sufficient
training data points to build a high-quality surrogate model
could be many, which grows exponentially with the number
of design variables. If an ad hoc training data preparation
is needed, carrying out those simulations could cost tremen-
dous time, canceling out the time saved using the surrogate
models. Hence, design optimization is often a by-product of
state-of-the-art antenna surrogate modeling methods, or the
antenna/EM device model is largely reusable.

Online methods, in contrast, keep improving the surrogate
model quality in the optimization process. In each iteration,
(a) surrogate model(s) is/are built using the available simu-
lated candidate designs. New candidate designs are generated
by search operators, which are then predicted by the surrogate
model. Using the prediction result, candidate designs with high
potential are simulated and used to update the surrogate model
for the next iteration. Hence, the surrogate model quality is
not always high but is gradually improved. Particularly, in the
beginning stage, the surrogate model quality may be poor due
to the lack of training data points.

Unlike assuming an accurate surrogate model like offline
methods, prediction quality and uncertainty largely affect the
optimization. When the prediction quality is insufficient and
the prediction uncertainty is not appropriately considered, the
optimization is highly likely to converge to a local optimum
far away from the design specifications [24], [25]. Therefore,
appropriate collaboration of the surrogate modeling method,
the search operators, and the model management method (i.e.,
the three key factors in Section I) is essential.

An important task in model management is to co-use the
prediction uncertainty together with the predicted value to
judge the potential of a candidate antenna design. This is also



called the prescreening or acquisition function [26], which
will be discussed in Section II-B. Explicitly providing the
prediction uncertainty for each candidate design (instead of
the overall uncertainty of the surrogate model) is necessary
for most prescreening methods.

B. GP Modeling and Prescreening, Advantages and
Drawbacks

The basic principle of GP is as follows [18]. In the fol-
lowing, superscript refers to the index of a sample in the
dataset and subscript refers to the index of a variable in a
sample. Giving n observations [x = (x1, . . . , xn) and y =
(y1, . . . , yn)], GP assumes that y(x) is a sample of a Gaussian
distributed stochastic process with mean μ and variance σ .
GP then predicts the value of y(x) for a new x using its
relation with the n observations. For example, a correlation
function can be described as follows:

Corr
(
xi , x j) = exp

(
−

d∑
l=1

θl|x i
l − x j

l |pl

)
θl > 0, 1 ≤ pl ≤ 2 (1)

where d is the dimension of x. θl and pl are the hyperpara-
meters, which are determined by maximizing the likelihood
function in the following equation:

1(
2πσ 2

)n/2√
det(R)

exp

[
− (y − μI)T R−1(y − μI)

2σ 2

]
(2)

where R is a n × n covariance matrix, and I is a n ×
1 vector having all its elements as unity. By maximizing the
likelihood function that y = yi at x = xi(i = 1, . . . , n) and
handling the prediction uncertainty based on the best linear
unbiased prediction, for a new point x∗, the predicted value
and prediction uncertainty are ŷ(x∗) and ŝ2(x∗), respectively,
which are as follows:

ŷ
(
x∗) = μ + rT R−1(y − Iμ) (3)

where

Ri, j = Corr
(
xi , x j), i, j = 1, 2, . . . , n

r = [
Corr

(
x∗, x1), Corr

(
x∗, x2), . . . , Corr

(
x∗, xn)]

μ̂ = (
IT R−1 y

)(
I T R−1 I

)−1
(4)

ŝ2(x∗) = σ̂ 2
[
1 − rT R−1r + (

I − rT R−1r
)2(

IT R−1 I
)−1

]
(5)

where

σ̂ 2 = (y − Iμ̂)T R−1(y − Iμ̂)n−1. (6)

Based on the above, two advantages of GP include: 1) there
are almost no empirical parameters in GP modeling except
deciding the type of correlation function; A few appropriate
correlation functions are already found by antenna surrogate
modeling researchers [8], [14], [15], [16]. Hence, overfitting
or underfitting like artificial neural networks (ANNs) is less
likely to happen, which improves the prediction quality and 2)
the prediction uncertainty (5) is statistically grounded, which

can play an important role when judging the full potential
of a candidate antenna design in prescreening or acquisition
function.

With prediction uncertainty, the widely used prescreening
methods include expected improvement [26], probability of
improvement [27], and LCB [28]. LCB is the fundamental of
the new prescreening method in this article and is introduced
as follows. Given the objective function y(x) has a predictive
distribution of N(ŷ(x), ŝ2(x)), an LCB prescreening of y(x)
is

ylcb(x) = ŷ(x) − ωŝ(x)

ω ∈ [0, 3] (7)

where ω is a constant and is often set to 2 in many algo-
rithms in the AI domain [24], and it is applicable to antenna
problems [8].

However, the main drawback of GP is its training cost.
In online surrogate-model-assisted antenna global optimiza-
tion, the total training time of GP models in the optimization
process can be estimated as TG P × Nspecs × Npop × Nit [11],
where TG P is the training time of each GP model, Nspecs is
the number of specifications, Npop is the number of candidate
designs in a population, and Nit is the number of iterations in
antenna design optimization.

For a GP model, the computational complexity is
O(Non3d) [24], where No is the number of iterations spent
in hyperparameter optimization (i.e., (2)) and n is the number
of training data points. n is highly affected by d to construct
a reliable surrogate model. Liu et al. [8] and [11] show that
at least 4 × d training data points are needed for antenna
problems. Often, when d reaches 20, TG P could be in minutes
for a normal computer and then grows cubically [11]. Also,
to maintain the exploration ability, Npop is also highly affected
by d (e.g., often at least 4 × d when using DE operators). This
makes the GP modeling time in antenna optimization become
long when d is large and could be even longer than the EM
simulation time.

To the best of our knowledge, TR-SADEA [11] is the first
method addressing this challenge. A self-adaptive GP model
sharing method is proposed aiming to highly decrease the
number of GP modeling while maintaining correct conver-
gence. Although this method decreases the GP model training
time to be practical, the time consumption (e.g., one to two
days for complex base station antennas with several tens of
design variables and specifications) is not desirable.

C. Antenna Design Optimization and the DE Algorithm

Antenna design optimization can be classified into local
optimization [29] and global optimization [1], [6]. The antenna
local optimization methods require an initial design, aiming
to find an optimal design around it, while for the antenna
global optimization methods, only a reasonable search range
is needed. Antenna global optimization does not guarantee to
obtain the global optimal design. It refers to not searching
around the initial design and having the search mechanism to
jump out of local optima in the design landscape.



In antenna global optimization, EAs were introduced into
this area two decades ago and are widely used. Multistart local
search and surrogate-model-assisted multistart local search for
antenna global optimization are introduced recently [17], [30],
showing successful results. This article focuses on using EAs.
As said in Section I, DE and PSO are arguably the most widely
used EAs in antenna global optimization [2], [5], [31], [32],
and DE operators are used in this work. A brief introduction
to DE is as follows [3].

P is a population composed of Npop individual solutions,
and each solution is denoted by x = (x1, . . . , xd) ∈ Rd .
To create a child solution u = (u1, . . . , ud), first, mutation
happens to generate a donor vector

vi = xi + F · (xbest − xi) + F · (
xr1 − xr2

)
(8)

where xi is the i th vector in the current population; xbest is the
best candidate solution in the current population P ; xr1 and
xr2 are two mutually exclusive solutions randomly selected
from P ; vi is the i th mutant vector; F ∈ (0, 2] is the scaling
factor. The mutation strategy in (8) is called DE/current-to-
best/1, which is used in SB-SADEA.

The crossover operator then happens to produce the child
solution u.

1 Randomly select a variable index jrand ∈ {1, . . . , d},
2 For each j = 1 to d , generate a uniformly distributed

random number rand from (0, 1) and set

u j =
{

v j , if (rand ≤ C R)| j = jrand

x j , otherwise
(9)

where C R ∈ [0, 1] is the crossover rate.

III. SB-SADEA ALGORITHM

A. Algorithm Framework

As discussed in Section I, this research aims to seek a
new machine learning core to replace GP and propose a
new prescreening method for it. The resulting SB-SADEA
algorithm is expected to significantly improve both the con-
vergence speed (i.e., the number of EM simulations used to
obtain the optimal design) and the surrogate model training
cost compared with the GP-based methods. Also, it should be
universal for antenna cases with various numbers of design
variables and specifications. In the following, the general
framework of SB-SADEA is first provided, and the details
of the two innovations are then described in Sections III-B
and III-C.

The SB-SADEA framework is shown in Fig. 1, and the
algorithm works as follows.

1) Step 1: Sample α (often a small number of) candidate
designs from the design space [L B, U B]d (L B and
U B are the lower and upper bounds of design vari-
ables, respectively) using Latin hypercube sampling
(LHS) [33]. Carry out EM simulations to obtain their
performance values and form the initial database.

2) Step 2: If a preset stopping criterion is met (e.g., the
computing budget is exhausted, satisfies the specifi-
cations), output the best candidate design from the
database; otherwise, go to Step 3.

Fig. 1. Flow diagram of SB-SADEA.

3) Step 3: Obtain the λ best candidate designs from the
database to form a population P .

4) Step 4: Apply the DE/current-to-best/1 operator (8)
to P to create λ new child solutions.

5) Step 5: For each child solution, obtain τ nearest sam-
ples (based on the Euclidean distance) as the training
data points and construct a BNN-based surrogate
model (see Section III-B).

6) Step 6: Prescreen the child solutions generated in
Step 4 using the BNN model and the self-adaptive
LCB method (see SectIII-C).

7) Step 7: Carry out EM simulation to the estimated
best child solution from Step 6. Add this evaluated
candidate design and its performance values to the
database. Go back to Step 2.

It can be seen that some model management operators are
borrowed from standard SADEA [8]. This model management
method is attracting much attention in the AI domain [22]
and its advantages are detailed in [8], [10], and [22]. The two
novel methods, including the BNN-based antenna surrogate
modeling (Step 5) and the self-adaptive LCB method (Step
6), which are red blocks in Fig. 1 are introduced in the
following subsections. Note that they are compatible with
model management frameworks in other SADEA versions and
some other online antenna global optimization methods.

B. BNN-Based Antenna Surrogate Modeling Method

To replace GP modeling, the machine learning core
must satisfy the following requirements: 1) can provide a
high-quality predicted value comparable to GP and has less
risk to be overfitted; 2) the prediction uncertainty of each
candidate design is statistically grounded; and 3) the training
cost is much lower than GP when the targeted antenna has
many design variables/specifications.

To meet the above requirements, an alternative is a stochas-
tic neural network, in particular, a BNN. Many fitting-based



Fig. 2. Illustrative figure of a basic BNN.

machine learning methods, such as most kinds of ANN,
radial basis function [34], and response surface models, either
cannot provide a prediction uncertainty for each candidate
design (not the uncertainty of the whole surrogate model)
or the prediction uncertainty is not statistically grounded.
However, a statistically grounded prediction uncertainty for
each candidate design is essential for prescreening or acquisi-
tion function (e.g., (7)). They are, therefore, less suitable for
online surrogate-model-assisted antenna global optimization
because the acquisition function largely affects the conver-
gence speed and the ability to jump out of local optima.
Although researchers suggest using the dropout method in
ANN training to provide a prediction uncertainty for each can-
didate solution [35], [36], [37], our experiments using antenna
problems show much worse results than GP. BNN, however,
can address this challenge. To the best of our knowledge, BNN
has not been used in antenna design optimization and is seldom
considered for surrogate-model-assisted optimization even in
the AI domain. In the following, BNN concepts are introduced.

Considering the antenna design variables as x, and the
performance as y, for an ANN, the model parameters are
θ = [w1, . . . , w j , b1, . . . , bk], where w are the weights and
b are the biases. In a multilayer ANN, each layer is a linear
transformation, followed by a nonlinear activation function.
The training optimizes the cost function, which is often
the log-likelihood of the training data points, i.e., maximize∑n

i=1 log(p(xi; θ)) with a regularization term. The optimized
θ , which are fixed values, is then used for prediction.

For BNN, the network structure does not change compared
with a standard ANN, but θ become stochastic variables with
their probability distribution p(θ). Fig. 2 shows an illustrative
figure of BNN. i , h, and o represent the neurons on the
input, hidden, and output layers of the BNN, respectively.
In the following, the training set is denoted by D, and the
training inputs and training outputs are denoted by Dx and
Dy, respectively. By applying Bayes’ theorem, the Bayesian
posterior can be expressed as

p(θ |D) = p(Dy|Dx,θ)p(θ)∫
θ

p(Dy|Dx,θ
′)p(θ ′)dθ ′ ∝ p

(
Dy|Dx, θ

)
p(θ)

(10)

where p(Dy|Dx, θ) is the likelihood, p(θ) is the prior,
the denominator is the evidence, and p(θ |D) is the posterior.
The posterior is what we acquire, which is used in obtain-

ing the predicted value and prediction uncertainty. Obtaining
p(θ |D) by standard sampling method is intractable. Hence,
the variational inference method [38] is proposed.

In variational inference, a new distribution q(φ) (φ are
the model parameters), called a variational distribution,
is proposed to approximate p(θ |D). By minimizing the
Kullback–Leibler (KL) divergence DKL between q(φ) and
p(θ |D), the closest distribution can be found to replace the
posterior. Compared with the posterior, q(φ) has a smaller
set of parameters, which are often considered as means and
variances of a multivariate Gaussian distribution, and are
optimized in training.

The cost function to be maximized is

Eφ∼q
(
logp

(
Dy|Dx; φ

)) − DKL(q(φ)||p(θ)). (11)

Equation (11) is called the evidence lower bound. The first
term E represents the Shannon entropy, which means the sum
of the expected log-likelihood of the data. The second term
is the regularization loss represented by the KL divergence,
which is a closed form for the Gaussian distribution. The
first item can be obtained by sampling. After optimization or
training, the posterior, p(θ |D), is approximated, and the BNN
is ready to be used.

When performing prediction by BNN, given the posterior,
p(θ |D), the model’s prediction uncertainty can be derived
from p(y|x, D). Mathematically, it can be written as

p(y|x, D) =
∑

θ

p
(

y|x, θ ′)p
(
θ ′|D

)
dθ ′. (12)

In practice, this is done by sampling [39]

θ ∼ p(θ |D). (13)

The predicted value is the average of BNN model output
samples

ŷ = 1

|�|
∑
θi ∈�


θi (x) (14)

where � is a set containing all θ , |�| is the size of the set,

θ (x) is the BNN model, and ŷ is the estimated output. The
uncertainty quantification is given by the covariance matrix
� y|x,D, which is

� y|x,D = 1

|�| − 1

∑
θi ∈�

(

θi (x) − ŷ

)(

θi (x) − ŷ

)T
. (15)

Some clarifications in terms of the requirements at the
beginning of this section are as follows.

1) BNN has a good potential to provide high-quality pre-
diction results. BNN can be interpreted as a special
case of ensemble methods [40]. The ensemble methods
are well-known for taking advantage of the fact that
the aggregation of multiple averaged and independent
predictors may outperform a single expert predictor,
given the same training information [41]. BNN’s sto-
chastic components similarly improve a normal ANN.
Also, BNN can avoid overfitting when learning from a
small dataset (i.e., available training data points via EM



simulations) by considering both aleatoric uncertainty
and epistemic uncertainty, as evidenced in [42].

2) The prediction uncertainty of BNN is statistically
grounded [43], [44]. Intuitively, as in (15), for any input
x, low uncertainty is given when multiple sample models
yield close estimated outputs ŷ; high, otherwise.

3) BNN has much less training complexity compared with
GP. As discussed earlier, the computational complexity
of a single GP model is O(Non3d). In the SADEA
series, n is linearly increased with d and there are m
specifications. Hence, the complexity is O(Nod4m). For
the BNN used in SB-SADEA, which uses two hidden
layers, the computational complexity is O(Nbd(d +
m)2s), where s is the sampling cost, and Nb is the
number of iterations in training. More verifications are
shown in Section IV.

Due to the considerably reduced training cost of BNN,
an idea inspired by deeply supervised nets [19] for image
recognition is proposed, which we call “fine supervision.”
Often, the antenna response over the operating band is consid-
ered as a whole and a maximum or minimum is obtained as
the performance (e.g., max(|S11|)). Using a point to represent
a whole curve, much information is lost.

In the proposed fine supervision, the response curve is
divided by resonances, and for each part of the response curve,
its maximum or minimum value is used. In this way, much
more information participates in the learning with the cost
of increasing the number of specifications (i.e., the number of
surrogate models). This is a significant burden to GP modeling
when the number of design variables is large because several
times more GP models need to be trained [11]. However, for
BNN, this is affordable because only the number of neurons
in the output layer increases. This conclusion is verified by
case study 2 (four-band 5G mm-wave antenna) in Section IV.

The parameter setting of BNN is as follows. The BNN
structure has two hidden layers, and the number of neurons is
d (input layer), 2d (the first hidden layer), max([d, 2m]) (the
second hidden layer), and m (the output layer), respectively.
The prior standard deviation is defaulted to be 0.1. The Adam
optimizer is used for training with an initial learning rate
of 0.05 and a decay rate of 0.999 in every step of the
model parameter optimization. An early stopping criterion is
set within training to stop any training proceeding with an
insignificant loss decrease. All the above are based on rules
of thumbs or empirical settings and are verified by antennas
with various characteristics.

C. Self-Adaptive LCB Method

For a machine learning core (i.e., BNN-based model in this
case), a corresponding prescreening method (Step 6 in SB-
SADEA) is often needed considering its own data character-
istics. Most existing prescreening methods consider the data
characteristics of the GP model. In our pilot experiments,
the widely used expected improvement [26] and probability
of improvement [27] prescreening are used together with the
BNN-based model for multiple antenna cases, and more than
50% of the runs are stuck in local optima. This invites us to

Fig. 3. GP and BNN predicted values and prediction uncertainty during
early, middle, and late stages of optimization (ground truth is from EM
simulations). (a) Early stage S11 predicted values. (b) Early stage S11
prediction uncertainties (standard deviation). (c) Middle stage S11 predicted
values. (d) Middle stage S11 prediction uncertainties (standard deviation).
(e) Late stage S11 predicted values. (f) Late stage S11 prediction uncertainties
(standard deviation).

study the difference in data characteristics between BNN and
GP in terms of predicted values and prediction uncertainty,
so as to propose a prescreening method that can jump out of
local optima and also improve the convergence speed for the
BNN-based model.

Using case study 1 in Section IV (i.e., UWB monopole
antenna), Fig. 3 shows the GP’s and BNN’s predicted values
and prediction uncertainty for three sample populations of can-
didate designs during the early, middle, and late stages in the
optimization process. max(|S11|) is used. It can be observed
that: 1) in terms of the predicted values, the BNN-based model
and GP-based model are comparable, and both show reason-
ably low prediction error compared with the simulated values
(i.e., ground truth) considering all three sample populations
and 2) in terms of the prediction uncertainty, the BNN-based
model shows much smaller values than that of GP, and the
gap between them is much clearer in the later iterations. For
example, when optimization is at its late stage and nearly
converges, the BNN prediction uncertainty is at the level of
0.05, while GP prediction uncertainty is at the level of 0.5.

The reason why a surrogate-model-assisted antenna global
optimization method falls into local optima is the lack of
exploration ability. In the optimization theory, exploration
refers to exploring the search region that currently lacks
knowledge, while exploitation refers to finding the optimum in
the search region with sufficient knowledge. Antenna design
landscapes are often highly multimodal, and strong exploration



ability is required [10]. Fully considering prediction uncer-
tainty is important for exploration, which is the reason for
prescreening methods. For the popular expected improvement
and potential of improvement prescreening methods, there are
no hyperparameters controlling the extent of exploration, and
the prediction uncertainty obtained by the BNN-based model
is small. Hence, it is not a surprise that using a BNN-based
model often leads to falling into a local optimum for antenna
cases compared with using the GP model.

A solution is using the LCB prescreening method (7) [28],
which has a hyperparameter ω to control the extent of explo-
ration. The value of ω can be set empirically using experiments
with various antenna design cases, and the recommended value
is 14. Using a large value for ω can promote the exploration
ability, but high exploration ability inevitably slows down
the convergence (i.e., more EM simulations) due to the no-
free-lunch theorem. Hence, a novel method to obtain the
appropriate trade-off, called the self-adaptive LCB, is pro-
posed. Liu et al. [45] have proposed a self-adaptive LCB
method by self-adaptively learning the appropriate ω value
from the optimization history. However, the method proposed
here targets the prediction data characteristics of BNN and is
completely different from the previous method.

Given the λ current best candidate designs, called Pb, and
a vector called S, where Si (i = 1, 2, . . . , k) saves the smallest
distance between the current predicted best candidate design to
all the candidate designs in Pb in each iteration, self-adaptive
LCB (Step 6 in SB-SADEA) works as follows.

1) Step 1: Obtain the best candidate design xb in the
child population in Step 4 of SB-SADEA using the
BNN-based model predicted values in Step 5 of
SB-SADEA.

2) Step 2: Calculate the distance between xb and each
individual in Pb and obtain the smallest distance,
Sk+1.

3) Step 3: Taking the last ten elements of S to form Sz,
z = k − 9, . . . , k, check whether Sk+1 from Step 2 is
smaller than S̄z−0.5 × σSz , where σSz is the standard
deviation of Sz. If yes, go to Step 4; Otherwise,
output xb.

4) Step 4: Prescreen the child population using the LCB
method (7) with the recommended ω value.

5) Step 5: Output the best candidate design according
to LCB values.

Some clarifications are as follows.

1) The self-adaptive LCB method alternatively uses the
BNN model predicted value and the LCB prescreened
value for selecting the estimated best candidate design
from the child population. The former is for promoting
exploitation so as to improve the convergence speed,
while the latter is for promoting exploration for jumping
out of local optima.

2) Whether the algorithm has sufficient exploration ability
or not highly depends on the diversity of Pb (Step
3 of SB-SADEA). Hence, the predicted values are used
when the diversity is reasonable, while LCB values are
imposed when the diversity is small.

3) The method to judge the extent of introduced diversity is
to compare with the smallest distance to any individual
in Pb with those in the last ten iterations. Assuming
Si (i = 1, 2, . . . , k) is Gaussian-distributed, the 0.5 × σ
value is used as the threshold to find those introducing
low diversity to Pb when using them.

D. Parameter Settings

Compared with standard SADEA [8], SB-SADEA only
introduces one new parameter, ω, in the self-adaptive LCB
method. Using various challenging antennas from fewer than
ten design variables to 45 design variables, from a few
specifications to more than 20 specifications, ω is suggested
to be set to 14 for successfully jumping out of local optima.
Although when using a smaller value of ω the two case studies
in Section IV can obtain the optimal design much faster and
also with a 100% success rate, the success rate for some other
cases does not reach 100%. Our experimental results show that
ω = 14 is safe to use, while for not so challenging antennas,
a smaller value can be used to improve the speed. In BNN
modeling, the network parameters are predecided by the rules
of thumb and do not need the users to alter. For all the other
parameters, the setting rule in other SADEA versions is still
applicable to SB-SADEA, which are: α = 4 × d , λ = 4 × d ,
τ = 4, F = 0.8, and C R = 0.8. They are used in all the test
cases in Section IV.

IV. EXPERIMENTAL RESULTS AND VERIFICATIONS

SB-SADEA is tested by seven challenging antennas with
various characteristics and the comparisons show the same
conclusion. In this section, two typical cases from them are
used to demonstrate SB-SADEA’s performance in different
aspects.

The first case study is a slotted monopole antenna for
UWB microwave imaging applications [46]. The antenna
has ten design variables and three specifications. The design
optimization of this antenna is challenging due to its compact
size to ensure proper physical placement and integration of
its antenna structure with compact components on the same
printed circuit board. For antennas with ten design variables
and three specifications, the machine learning cost using most
methods is often small. Hence, the purpose of this case study
is to test SB-SADEA’s convergence speed (i.e., the number
of EM simulations needed to obtain the optimal design) when
facing stringent design specifications.

The second case study is a four-band mm-wave antenna for
wearable 5G and beyond applications [47]. It has 20 design
variables and 12 specifications. The design optimization of
a high-performance 5G mm-wave antenna is often challeng-
ing [48], and this case study has particular challenges due
to its compact size, lightweight, low profile, and low mainte-
nance with a simple off-centered microstrip feeding structure.
Moreover, maintaining a multiband, high-gain operation in
wearable scenarios for body-centric wireless communications
at mm-wave frequencies increases the design complexity
and sensitivity. Considering the number of design variables



Fig. 4. Layout of the compact UWB slotted monopole antenna.

and specifications, the machine learning cost can be consid-
ered computationally expensive for the GP-based methods.
Although antennas with more design variables and specifica-
tions can make the advantages of SB-SADEA even clearer,
considering the time to draw statistical conclusions (i.e., using
sufficient runs), this antenna is selected as a representative.
Hence, the purpose of this case study is to test SB-SADEA’s
performance in terms of both convergence speed and machine
learning cost.

For both the antennas, because no reasonably good initial
designs can be provided, the search ranges provided by the
antenna designers are relatively wide, although restricted by
the compact size. The antennas are optimized in a workstation
with an AMD Ryzen1 Threadripper1 PRO (2.7 GHz) and an
NVIDIA2 RTX1 A4000 GPU. In all, 80 MATLAB parallel
workers are activated for GP/BNN-based surrogate model
training.

The SADEA series are stochastic algorithms and ten inde-
pendent runs are carried out for case study 1 to draw statistical
conclusions. Ten runs of design optimization are expected to
be over a month for case study 2, and five independent runs are
carried out. P-SADEA [10], [12] is selected as the reference
method for case study 1 since it is one of the state-of-the-
art methods for antenna design global optimization with fewer
than 20 design variables with a few specifications. PSO, as one
of the most popular EAs for antenna global optimization,
is also used as a reference.

TR-SADEA [11] is selected as the reference method for
case study 2, since to the best of our knowledge, it is
the only published method for antenna global optimization
with many design variables and specifications, addressing the
challenge in machine learning cost. DE, as one of the most
popular EAs for antenna global optimization, is also used as
a reference. In terms of parameter setting, SB-SADEA fol-

1Trademarked.
2Registered trademark.

TABLE I

SEARCH RANGES OF THE DESIGN VARIABLES AND THE OPTIMAL DESIGN
BY SB-SADEA (ALL SIZES IN MM) (CASE STUDY 1)

TABLE II

DESIGN SPECIFICATIONS AND THE PERFORMANCE OF A TYPICAL OPTI-
MAL DESIGN OBTAINED BY SB-SADEA (CASE STUDY 1)

lows Section III-D, P-SADEA follows [10], and TR-SADEA
follows [11]. The PSO optimizer with default parameters in
Computer Simulation Technology—Microwave Studio (CST-
MWS) is used. The setting of the DE optimizer follows [3].

A. Case Study 1: A Compact UWB Slotted Monopole
Antenna

The layout of the slotted monopole antenna is shown in
Fig. 4. The antenna is implemented on an FR-4 substrate with
a thickness of 0.8 mm, a relative permittivity of 4.4, and a
loss tangent of 0.02. It consists of a driven circular patch
radiator and two uniform rectangular metal planes separated
by the microstrip line. Two slots are fused at the center
of the driven circular patch radiator to form a quasi-cross
slot, and the geometry of the slot helps control the surface
current distribution. Meanwhile, the rectangular planes act as
a coplanar partial ground.

The slotted monopole antenna is modeled and discretized
in CST-MWS with over 162 000 mesh cells in total. Each EM
simulation costs about 45 s on average. For the optimization
of the slotted monopole antenna, the design variables shown
in Fig. 4 and their search ranges in Table I are considered.
The optimization goal is to minimize the fitness function,
Fmonopole, to satisfy the design specifications shown in Table II,
mathematically

Fmonopole = w1 × max(|S11| + 10, 0)

+ w2 × max(Gmax − 3, 0)

+ w3 × max(1 − Gmin, 0) (16)

where w1, w2, and w3 are the penalty coefficients set to 1,
50, and 50, respectively. When all the design specifications in



TABLE III

NUMBER OF EM SIMULATIONS (AVERAGE NUMBER) USED TO SATISFY THE SPECIFICATIONS FOR DIFFERENT METHODS (CASE STUDY 1)

Fig. 5. Convergence trends of SB-SADEA (case study 1, ten runs).

Fig. 6. Response of the optimal design obtained by SB-SADEA (case study
1). (a) Reflection coefficient of the optimal design. (b) Realized gain of the
optimal design.

Table II are satisfied, Fmonopole is equal to 0. Ten independent
runs are carried out for SB-SADEA and all the other reference
methods except PSO. Three runs are carried out for PSO
because more runs are not affordable.

In all the ten runs, SB-SADEA satisfies the design spec-
ifications shown in Table II using an average of 924 EM
simulations (12 h). Fig. 5 shows the convergence trends. Fig. 6
shows the reflection coefficient and the realized gain of a

typical optimal design mentioned in Table II. The size of the
antenna shrinks to about 60% compared with a state-of-the-art
reference design [49].

As discussed earlier, as one of the state-of-the-art methods
for antennas with stringent specifications but without many
design variables and specifications, P-SADEA is considered as
the reference method. P-SADEA also shows a 100% success
rate but uses an average of 1574 EM simulations to satisfy
all the specifications. Therefore, SB-SADEA saves 40% of
the EM simulations compared with P-SADEA. Note that
compared with the standard SADEA [8], P-SADEA improves
the convergence speed at the cost of more GP modeling [10],
[12] by its new model management framework. SB-SADEA,
on the other hand, only uses the model management frame-
work of the standard SADEA [8], and the comparison result
shows the effectiveness of the BNN-based modeling and self-
adaptive LCB techniques. Moreover, they are compatible with
the model management framework of P-SADEA, forming an
even faster method.

To verify the effectiveness of the BNN-based antenna mod-
eling, including the fine supervision, and the self-adaptive
LCB-based prescreening, more comparisons are shown in
Table III. When the GP model is used, the ω value for LCB
is set to 2 as other SADEA versions, instead of 14 for the
BNN-based model.

The following conclusions can be drawn from Table III.

1) By comparing SB-SADEA with GP-ALCB, when both
make use of the self-adaptive LCB-based prescreening,
nearly 25% fewer EM simulations are saved by the
BNN-based surrogate modeling compared with GP.

2) By comparing SB-SADEA with FBN-LCB, when both
make use of the BNN-based surrogate modeling, nearly
30% fewer EM simulations are saved. This indicates
the effectiveness of the self-adaptive LCB prescreening
and its co-working with the BNN-based model. For
the BNN-based model, the prediction uncertainty is
smaller than that of GP (see Section III), and a larger
ω has to be used in LCB prescreening to guarantee
the exploration ability, which inevitably slows down
the convergence speed. Hence, the self-adaptive LCB
technique is essential for the BNN-based model.

3) By comparing SB-SADEA with BN-ALCB, where the
only difference is the use of fine supervision, about 15%
fewer EM simulations are saved, showing the effect of
fine supervision.

4) GP-LCB (i.e., standard SADEA) is the slowest and
SB-SADEA decreases 53% of the necessary EM simula-
tions to obtain the optimal design, showing the combined



Fig. 7. Layout of the four-band 5G mm-wave antenna.

effect of the BNN-based antenna surrogate model and
the self-adaptive LCB method.

In the three PSO runs, the specifications on realized gain
are satisfied, but the specification on max(|S11|) is not, and
the average value is −5.2 dB. This can be attributed to
the compactness of the structure and the stringency of the
design specifications. Considering all these comparisons, this
case study verifies the advantages of SB-SADEA in terms of
convergence speed.

B. Case Study 2: A Four-Band Mm-Wave Antenna

This case is designed to exhibit a quad-band operation with
significant band discrimination and high gain at mm-wave
frequencies of 28, 38, 50, and 60 GHz. It aims to achieve a
minimum realized gain of 4.5 dB and a total efficiency better
than 80% for all the four operating bands. This low-profile
antenna uses a patch geometry combining a square patch
with an L- and an F-shaped slot on a Rogers RT/Duroid
5880 substrate of 0.254 mm thickness, relative permittivity of
2.2, and loss tangent of 0.0009. This single-layer 5.1 mm ×
5 mm × 0.254 mm antenna is excited by a 50 � off-centered
single-feed microstrip line. The slots positioned close to the
edges of the patch make the current mostly concentric there
and generate inductive and capacitive effects resulting in the
multifrequency operation.

The four-band mm-wave antenna is modeled and discretized
in CST-MWS with nearly 300 000 mesh cells in total. Each EM
simulation costs around 2–2.5 min. For the optimization of the
targeted antenna, the design variables shown in Fig. 7 and their
search ranges in Table IV are considered. The optimization
goal is to minimize the fitness function, Fmmwave, to satisfy
the design specifications shown in Table V, mathematically

Fmmwave =
4∑

i=1

w1 × max
(|Si

11| + 10, 0
)

+
4∑

i=1

w2 × max
(
4.5 − Gi

min, 0
)

+
4∑

i=1

w3 × max
(
0.8 − Ei

total, 0
)

(17)

TABLE IV

SEARCH RANGES OF THE DESIGN VARIABLES AND A TYPICAL OPTIMAL
DESIGN OBTAINED BY SB-SADEA (ALL SIZES IN MM)

(CASE STUDY 2)

TABLE V

DESIGN SPECIFICATIONS AND THE PERFORMANCE OF A TYPICAL OPTI-
MAL DESIGN OBTAINED BY SB-SADEA (CASE STUDY 2)

where i is the index for the current frequency band out of
the four frequency bands. w1, w2, and w3 are the penalty
coefficients set to 1, 50, and 50, respectively. When all the
design specifications in Table V are satisfied, Fmmwave is equal
to 0.

Five independent runs are carried out to test SB-SADEA.
All of them satisfy the design specifications shown in Table V
using an average of 1202 EM simulations. Fig. 8 shows the
convergence trends. Fig. 9 shows the reflection coefficient,



Fig. 8. Convergence trends of SB-SADEA (case study 2, five runs).

Fig. 9. Response of the optimal design obtained by SB-SADEA (case study
2). (a) Reflection coefficient of the optimal design. (b) Realized gain of the
optimal design. (c) Total efficiency of the optimal design.

realized gain, and total efficiency of a typical optimal design
in Table IV.

As discussed earlier, TR-SADEA [11] is selected as the
reference method. In all the five runs, it also has a 100%
success rate but uses an average of 2426 EM simulations.
Hence, SB-SADEA decreases the number of EM simulations

TABLE VI

COMPARISON BETWEEN SB-SADEA AND TR-SADEA (CASE STUDY 2,
AVERAGE VALUES)

by more than 50% compared with TR-SADEA in this case
study, verifying the advantages in convergence speed again.

The other aim of this case study is to compare the machine
learning cost. TR-SADEA is proposed for antennas with
many design variables and specifications, where GP mod-
eling time becomes a challenge. By its GP model sharing
method, TR-SADEA often reduces the GP modeling time by
90% [11]. Still, for the targeted antenna, an average of over
426 000 GP surrogate models are built in the optimization
using TR-SADEA, taking about 12 h on average. This time
consumption is practical but not desirable. With BNN-based
surrogate modeling in SB-SADEA, only 1.6 h of surrogate
model training time on average is used. Table VI demonstrates
the number of EM simulations used, the number of surrogate
models trained, and the total time used for the two methods.
The average values of the five independent runs are used.
The significant improvement in terms of the machine learning
cost of SB-SADEA is also shown. The total optimization time
decreased by more than a half compared with the reference
method, TR-SADEA.

DE is carried out for the 5G mm-wave antenna. After
two weeks of optimization, none of the reflection coefficient
specifications is satisfied, and only half of the gain and total
efficiency specifications are met. Longer run may improve the
performance, but the optimization time is too long for practical
use. Considering all these comparisons, this case study verifies
the advantages of SB-SADEA in terms of both convergence
speed and machine learning cost.

V. CONCLUSION

In this article, the SB-SADEA method has been proposed.
Its effectiveness and efficiency are demonstrated by two
real-world challenging antenna design cases. The main contri-
butions of this article include: 1) introducing the BNN-based
surrogate modeling into online antenna global optimization
area to replace GP modeling and 2) introducing a new
self-adaptive LCB method to co-work with the BNN-based
surrogate model, which is essential for it. Hence, significant
advantages in terms of both convergence speed (i.e., the num-
ber of EM simulations needed to obtain the optimal design)
and machine learning cost are obtained. Due to the above
innovations, SB-SADEA transforms the SADEA series from
the GP-model-based to the BNN-model-based and becomes
universal for antennas with various numbers of design vari-
ables and specifications, and also with significant performance
improvement. Future works will include behavioral analysis of
SB-SADEA and its improvement.
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