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Abstract—The automated design of antennas made possible
through the use of artificial intelligence (AI) techniques is attract-
ing much attention. This development can be mainly attributed
to the reduced design time and the higher quality of design
solutions that AI-driven antenna optimization methods provide
in comparison to their more traditional counterparts. Due to
the growing need to fulfill more stringent design specifications
and functional requirements for both present-day and future
wireless communication systems, the design and development of
antennas and antenna systems have increased both in scope and
complexity, such that conventional methodologies are often not
fit for an efficient practical implementation. In this paper, a brief
overview of some of the latest AI-based techniques for the design
and optimization of contemporary antennas is provided with the
goal of providing information on recent research to researchers
in this growing area of interest.

Index Terms—AI, Antenna Optimization.

I. INTRODUCTION

The design of contemporary antennas is often fraught
with a number of challenges such as dealing with complex
topological profiles and material compositions, and the need
to meet stringent performance requirements for present-day
applications such as 5G and 6G [1]. To overcome these
challenges, antenna engineers often tend to combine their
experience with parametric studies (the sweeping of a few
critical design parameters in discrete step-sizes to understand
their influence on the performance of the antenna) until a
sufficiently good design can be found [2]. In many cases, as
is often the case with contemporary antenna structures having
quite a few interrelated design parameters and specifications,
this process tends to be exhaustive without any guarantee of
successful outcomes [3], [4]. Hence, an automated approach
(design automation via optimization) is preferred for a more
effective design exploration of modern antenna structures [5].

The automated design of antennas via optimization offers
numerous advantages that include, but are not limited to, con-
sideration of more than a few design parameters concurrently
and obtaining a high-quality design solution for the given
antenna structure. In spite of the many advantages offered by
numerical optimization techniques that are compatible with
antenna design, their inherent drawbacks also tend to make
them unfit for many contemporary antenna design problems.
For example, local optimization techniques tend to rely on a

good initial design as a starting point or an anchor point to
ensure their success [6], [7]. Global optimization methods, on
the other hand, often require a large (sometimes not affordable)
number of full-wave electromagnetic (EM) simulations (i.e.,
objective function evaluation) to obtain near-optimal designs
[6], [8], [7]. Today, a good initial design is often unavailable
for many practical antenna design cases and large computa-
tional efforts costing several weeks to months are also undesir-
able to ensure a low time-to-market for antenna products [9].
This is why standard local and global numerical optimization
techniques are often not suitable for the automated design of
a broad class of antennas.

In the last decade, researchers in the artificial intelligence
(AI)-driven design field have proposed innovative ways of
overcoming the limitations (discussed above) inherent in tra-
ditional numerical optimization techniques. A majority of
these proposed methods are implemented by introducing AI
techniques, specifically, machine learning (ML) into the kernel
of conventional numerical optimization methods to make them
more efficient and robust [9]. This approach often takes the
form of surrogate modeling where predictions from metamod-
els or data-driven models are used to replace computationally
expensive full-wave electromagnetic (EM) simulations in the
optimization process [10]. In this paper, some of the state-
of-the-art AI-driven design methods that employ surrogate
modeling or predictive modeling for the expedited design of
antennas for contemporary applications are briefly discussed.

II. AI-DRIVEN ANTENNA DESIGN OPTIMIZATION

In recent times, AI techniques have been used to enhance the
efficiency and reliability of simulation-driven antenna design
and optimization methodologies to make them better suitable
for a broader class of contemporary antenna structures. Some
of the most recent approaches are briefly discussed as follows
to highlight their mode of operations and applications:

A. Evolutionary Algorithms

Evolutionary algorithms (EAs) such as genetic algorithms
(GAs), differential evolution (DE), particle swarm optimiza-
tion (PSO), and their state-of-the-art variants have been applied
extensively to the automated design of antennas [11]. They



mainly work by carrying out a nature-inspired global search of
the given antenna’s design space to find near-optimum antenna
designs. The primary advantages of employing EAs in the
antenna design process include their non-reliance on initial
designs and the circumvention of the time and labor-intensive
experience-driven manual tuning of antenna structures that
is often required to get proposed antenna structures to meet
desired specifications and requirements [12], [6], [11].

In recent years, examples of EAs applied to the automated
design of antennas include (but are not limited to) the use of
invasive weed optimization (IWO) and ant colony optimization
(ACO) to the design of aperiodic subarrayed phased arrays and
millimeter wave (mmWave) microstrip antennas, respectively
[13], [14]. For both problems, IWO and ACO generated
acceptable design solutions with better performance than the
reference designs. However, the computational budget for EAs
could easily become cumbersome or even unaffordable due to
the large number of full-wave EM simulations required to find
near-optimum designs for several antenna design problems
[15], [6]. EAs also tend to have slow convergence speeds for
some antenna design problems [6].

B. ML-Assisted Evolutionary Algorithms

To lower the computational cost of EAs and enhance their
efficiencies, surrogate models built using ML techniques are
often used to replace full-wave EM simulations in their opti-
mization kernels. This class of EAs also called SAEAs (surro-
gate model-assisted EAs) tend to be more efficient (typically,
in terms of optimization speed) and offer design solutions of
higher quality in comparison to their pure EA counterparts
[16], [17]. The SADEA (surrogate model-assisted differential
evolution for antenna synthesis) family of algorithms fall
into this category. They primarily focus on the harmonious
working of evolutionary computation and supervised learning
techniques considering antenna design landscape characteris-
tics [18], [19], [20], [21], [22], [23]. SADEA methods are
non-reliant on initial designs and ad-hoc processes in their
optimization frameworks, making them more robust and better
suited for the optimization of a broad class of antenna design
problems [24], [25]. SADEA methods show several times
to up to 20 times speed improvement compared to standard
numerical optimization methods when employed for the design
automation of the same antenna structures, while obtaining
design solutions of higher quality [18], [6], [21].

In SAEAs, the curse of dimensionality has been a major
bottleneck [18], [22]. This is often linked to an exponential
increase in the training or learning time of ML techniques as
the dimensional space of their training data points increases
[18], [22]. As a result, the efficiency of traditional SAEAs is
often lowered for the optimization of antenna structures having
a relatively large dimensional space [22]. In recent times,
SADEA methods have also been demonstrated to be fit for
the optimization of complex and high-dimensional (up to and
over 100-D) antenna structures [22], [23]. In [22], radial basis
function (RBF)-assisted local optimization and self-adaptive
Gaussian process (GP) surrogate modeling are employed to

have a reduced training cost for the surrogate modeling stage
of the optimization process, while maintaining the efficiency
of the SAEA-based optimization. To further lower the com-
putational cost of the surrogate modeling stage of the ML-
assisted optimization of high-dimensional antenna structures,
whilst keeping the efficiency, the harmonious working of
Bayesian neural network (BNN)-based surrogate modeling and
self-adaptive lower confidence bound (LCB) prescreening of
predictions is employed in [23], the latest installment of the
SADEA series of algorithms.

Another recent approach is the improved PSO that employs
the co-use of a global radial RBF model and a kriging model to
replace computationally expensive full-wave EM simulations
and to guide the PSO updating mechanism [9]. This approach
allowed for the use of mixed prescreening in a coadjutant
manner, where swarm particles with the minimum predicted
objective function and maximum expected improvements are
co-selected in the improved ML-guided PSO. The improved
PSO has been verified using antenna problems that include
a substrate-integrated waveguide (SIW) cavity-backed slot an-
tenna, a linear array, and a sequential-rotation feeding network
for wireless communication applications [9]. In all cases, good
design solutions were obtained.

C. Multifidelity Optimization

The general idea behind multifidelity optimization of an-
tennas is to filter out non-promising design solutions using
low-fidelity models that are inexpensive to simulate but less
accurate, and to search around ”promising” solutions dis-
covered by the low-fidelity model using more accurate and
expensive high-fidelity models. The models could be surrogate
and/or EM models [26], [27], [28]. Multifidelity optimization
methods have been applied to several antenna design problems.
For example in [28], an ultrawide band monopole antenna, a
dual-band monopole antenna, a triband patch antenna, and a
series-fed microstrip array antenna have been designed using
this approach. The method in [28] improves the conventional
Gaussian process regression (GPR)-based ML-assisted opti-
mization of antennas via a multi-branch approach involving
the use of multiple fidelity models to generate multifidelity
GPR models and multiple constants or thresholds for the lower
LCB prescreening. Such that during the optimization process,
the accuracy of the low-fidelity models of the antennas is
established and validated using corresponding high-fidelity
simulations, and the search space for the LCB constant that is
largely responsible for balancing exploration and exploitation
assumes predefined discrete values (i.e., {0, 1, 2}).

Another ML-assisted antenna optimization method employ-
ing the use of multifidelity or variable-fidelity models of the
given antenna structure in the optimization process to further
improve the efficiency of surrogate modeling and the overall
optimization process has been proposed [29]. In [29], variable-
fidelity EM models are used for both the surrogate domain
definition and the final rendering of the surrogate model
employed in the optimization process. Co-kriging is then
employed to blend the low-fidelity and high-fidelity simulation



data to better manage model discrepancies. This approach
eliminates the need to correct the low-fidelity model which is
a norm in multifidelity-based optimization approaches where
model discrepancies must be handled reliably. The surrogate-
model-assisted combined global and local search stage for
efficient high-fidelity simulation model-based optimization is
another method for the multifidelity optimization of antennas
that handles model discrepancies efficiently [18]. It is the
second installment in the SADEA series of algorithms [19]. It
works as a multi-stage optimization framework that features
data mining and local search to efficiently and reliably handle
model discrepancies while ensuring high efficiency and good
convergence speed [19].

D. Domain Knowledge-Assisted Antenna Optimization

To reduce the computational cost of antenna array design,
a methodology that employs knowledge of the active base
elements (ABEs) of antenna arrays and their patterns, and
the use of GPR to predict and model ABE geometries and
the corresponding excitations of the sub-arrays (in instances
where it will not be possible for analytical methods to build
accurate models) is proposed in [30]. This approach is more
efficient compared to related approaches (such as [31]) be-
cause it lowers both the dimension space and computational
complexity of design and surrogate modeling via virtual sub-
array approximation. Domain knowledge such as the division
of the space around the ABE of interest into several sections
using a fixed coupling area radius and further segmentation of
the coupling area into a fixed number of sections using the
azimuth angle are employed to guarantee the efficiency of the
optimization process [30].

To have a low-cost robust design of antennas and arrays,
ML-assisted optimization algorithms have also been intro-
duced into a conventional design framework to effectively
reduce the computational cost of simulation-driven global
optimization and tolerance analysis in [32]. Specifically, worst-
case analysis (WCA), maximum input tolerance hypervolume
(MITH) search mechanism, and robust optimization are em-
ployed to expedite the robust design process. The proposed
method in [32] was successfully applied to the multi-objective
optimization of an antenna array and a microstrip patch
antenna, respectively. To ensure an effective implementation
of the method, a surrogate model mapping between the design
parameters and performance via a GA-based WCA is first
performed, followed by an MITH-based search to obtain the
MITH of the design point of interest. These processes are
reliant on domain knowledge about the design space for the
design point, the output tolerance region and the model [32].
Correlations between the design parameters and the MITH
are then established using the training set resulting from the
MITH-based search before the primary online GPR-based
surrogate modeling can take place.

E. Other Recent ML-Assisted Antenna Optimization Methods

The co-working of a novel generative algorithm (inspired by
generative adversarial networks (GANs)) and support vector

classifier (SVC) in a unified evolutionary approach framework
has been proposed in [33] for the automation of antenna design
using dual resonance and broadband antennas as examples.
The proposed method primarily works by training the discrim-
inator, the generator, and the SVC to predict the performances
of antenna models, create new candidate designs, and classify
the candidate designs before simulating the created designs,
respectively. This approach shows noticeable improvement (in
terms of optimization time) compared to traditional antenna
optimization methods and allows for the generation of multiple
geometric designs that meet the same performance require-
ments in terms of reflection coefficient specifications.

Recently, an expedited way of optimizing the parameters
of antenna structures has been proposed through the co-
use of accelerated gradient-based antenna optimization with
numerical derivatives and response feature methodology in
[4]. For the proposed method in [4], the response feature
methodology allowed for the enhancement of the predictive
power of the surrogate models used to replace computationally
expensive EM simulations in the optimization process, and
a sparse Jacobian matrix update for the trust region-based
search is enacted by limiting the finite differentiation-based
sensitivity updates to subspaces where a majority of response
variability is restricted to. The proposed method in [4] has
been applied to optimize dual-band and tri-band microstrip
patch antennas having less than 12 design parameters and good
design solutions were obtained.

III. CONCLUSION

In this paper, present-day AI-based antenna design opti-
mization methods are briefly discussed to highlight their key
features and applications. The following observations can be
noted summarily for present-day ML-assisted antenna opti-
mization methods: (1) They are typically more efficient than
their more traditional counterparts while providing designs
with higher quality. (2) Some of them are more suitable
for specific antenna problems (e.g., antenna problems where
relatively good initial designs are available as starting or
anchor points), showing excellent results. (3) In some methods,
domain knowledge for implementing ad-hoc processes plays
an important role in guiding the optimization process to yield
excellent results. (3) The SADEA series, which is non-reliant
on initial designs and ad-hoc processes, is more general and
applicable to a broader class of antenna design problems,
including those with many design variables.
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