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Abstract 
 

There is a tendency to overlook or play down software 
issues in industrial systems design.  However the very 
best hardware will only be as effective as the programs 
that control it.  The search for a software solution to a 
problem should not stop with the discovery of the first 
approach that works, or appears to work.  Many 
problems support good and bad methods of solution and 
determining the best often requires deeper consideration. 

In this paper we present some rudimentary 
introductions and examples of common computational 
challenges. We aim to highlight key issues for 
consideration when implementing control systems which 
otherwise might be unintentionally overlooked. 
 
1. Introduction 
 

When we look at an industrial system, we see its 
hardware.  The innovative technology and precision 
engineering are apparent.  The years of research and 
subtleties of design are often implicit but equally obvious.  
Less tangible still (by definition) and often overlooked is 
the software that makes it all work.  However without this 
software, of course, work it will not! 

This might appear a trivial observation, sufficient to irk 
a software engineer maybe but nothing more.  However to 
take on a design project with such a dismissive view of the 
software’s importance will be to compromise the system’s 
effectiveness from the outset.  Worse, it may present 
obstacles to the success of the project that no amount of 
state-of-the-art hardware can overcome.  Worse again, 
some things are not even worth trying! 

This article offers a brief insight into some of the issues 
involved in problem-solving software design through two 
simple applications.  Very simple in fact - the complexity of 
most industrial software systems would defy analysis in a 
few pages.  Instead we look first at a generic form of 
problem which itself proves to be much too difficult with 
which to deal, then secondly at a cut-down version.  
Before that though, some basic principles are introduced.  

 
 

 
2. The Limits of Algorithms 
 

Actually some problems cannot be solved - at all that 
is.  There are some problems for which it is impossible to 
produce a program that will deal with them.  The most 
famous of these is Alan Turing’s Halting Problem 
although there are many others.  The Halting Problem asks 
for a program that will determine whether a second 
program will terminate naturally or become locked in an 
infinite loop.  No such (first) program can exist.  Although 
given examples of (second) programs can be dealt with 
individually, it is impossible to write a (first) program 
capable of pronouncing for all of them.  We do not attempt 
to prove this statement here [1]. 

In laying aside the unsolvable problems to concentrate 
on the solvable, we immediately exhaust the typical 
mathematician’s interest in the subject.  However, among 
solvable problems, there appear to some that are 
essentially harder than others.  The study of such 
differences has occupied the computational mathematician 
for the last two or three decades and some questions 
remain unanswered.  That which is understood becomes 
the realm of the algorithmic designer.  An algorithm is 
simply a program in abstract form - that is, independent of 
language or implementation. 

 
// Skeleton program - 1D loop 

    : 
main() { 

    : 
    for (i = 1; i <= n; ++i) { 
      : 
    } 
    : 

} 

Figure 1 - A One-Dimensional Loop 
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// Skeleton program - 3D loop 

   : 

main() { 

   : 

   for (i = 1; i <= n; ++i) { 

      : 

      for (j = 1; j <= n; ++j) { 

         : 

         for (k = 1; k <= n; ++k) { 

            : 

         } 

         : 

      } 

      : 

   } 

   : 

} 

Figure 2 - A Three-Dimensional Loop 

Consider the simple code fragment in Figure 1.  Here a 
single loop runs a control variable from 1 to some value n.  
If n is the key value of the program, the number of data 
items to be processed, say, and there are no more 
significant loops, then the complexity of the program can 
be seen to increase linearly with n.  In fact we c an express 
this complexity as O(n) .  There is no need to consider the 
number of instructions within the loop or the number of 
similar loops.  In Figure 2, by the same process, the 
complexity can be written as O(n3), no longer linear in n 
but polynomial.  Any program having a complexity 
expression of the form O(nx) can be described as having 
polynomial complexity.  Lesser exponents may be ignored: 
O(n4 + n2), for example, can be simplified to O(n4) since, 
for increasing values of n, n4 becomes the dominant term.  
The complexity of a program is effectively a measure of 
how much it will begin to slow down as n increases.  
Programs with polynomial complexity of O(nx) will slow 
down more for larger values of x as illustrated in Figure 3.  
However, there are worse cases to consider. 

 
 
 
 
 
 
 

 
 
 
 

Figure 3 – Various nx Curves  
Figure 4 – Various n3 and 3n Curves 

 
Some programs will have greater than polynomial 

complexity – quite how, we shall see in the next two 
sections.  The common term for this is exponential 
complexity.  This is a slight generalisation but will serve us 
well enough.  O(xn) is the generic form of exponential 
complexity.  Figure 4, for example, shows how 3n increases 
compared to n3 as n increases.  In simple terms, programs 
of polynomial complexity are generally acceptable - those 
of exponential complexity, not. 

These descriptions of program complexity can be 
equally applied to the problems they are attempting to 
solve providing, that is, that we can be sure we have the 
most efficient program for a given problem.  As we shall 
see later, there are good and bad ways of writing programs 
to solve the same problem.  To be able to accurately 
classify a problem we need to know the best algorithm. 

Many problems, and most ‘every-day’ ones, are known 
to have poly nomial complexity.  These are collectively 
identified as the class P.  The wider class of problems 
having polynomial or exponential complexity is generally 
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referred to as NP.  Technically, NP stands for ‘non-
deterministic polynomial’ rather than ‘non-polynomial’, as 
might be supposed, but that need not concern us here.  
Clearly P is a subset of NP as shown in Figure 5. 

 

Figure 5 – The Classes P and NP 
 

Figure 6 – The Classes P, NP and NP-Complete? 
 

A reasonable question would be to ask if there really 
are any problems in NP that are not in P or whether they 
are actually the same class.  In other words, are there any 
problems that are genuinely exponentially complex or can 
all problems be solved by a polynomial algorithm if only 
we can find it?  Are exponentially complex algorithms 
necessary in some cases or simply the result of poor 
design? 

Essentially, the answer to this question is unknown.  
The current situation is summarised as follows: 
 
1. There are many problems for which polynomial 

algorithms are known. 
2. There are many problems for which polynomial 

algorithms are not known. 
3. There are a number of these problems, for which 

polynomial algorithms are not known, which are 
known to be equivalent to each other in the sense 
that the discovery of a polynomial algorithm for one 
would effectively provide polynomial algorithms for 
all.  This class of problems is referred to as NP-
complete. 

4. It has not been proved that no polynomial algorithm 
exists for any NP-complete problem. 

 
Points 1, 2 and 3 suggest a relationship between the 

classes as shown in Figure 6.  However, point 4 means we 
cannot be sure.  The discovery of a proof that NP-
complete problems can not be solved by polynomial 
algorithms would dispel all doubt.  The discovery of such 
a polynomial algorithm, however, would be unexpected to 
say the least. 
 

3. A Job-Sequencing Problem 
 

All of this may sound a little theoretical, lacking 
practicality, so we introduce an example.  Consider a piece 
of machinery, able to perform a number of processes.  
Suppose, in general operation, that this multi-functional 
device is to perform n tasks, each of which involves the 
machine starting and finishing in a number of different 
positions or settings.  If we represent the time taken to 
reset the machine to start job j after finishing job i by tij 
then a complete description of the delays involved is 
given by the matrix T = (tij) 1≤ i,j ≤ n, an example of which 
is given in Figure 7. 

Figure 7 – A Delay Matrix Example 
 

Now 
consider 
the 
software 
controlling 
this device.  
A useful 
feature 
would be 
for the 
system to 
automaticall
y calculate 
in which 
order the 
jobs should best be executed.  This optimum would be an 
ordering of the jobs 1, 2, ... i, j, ..., n such that the sum of 
the tijs is minimised.  If there is more than one round of 
jobs to process then it will be necessary to reset the 
machine to start the first job after the last each time and 
the problem becomes cyclic. 

This question, often rephrased as the Travelling 
Salesman Problem or TSP is known to be NP-complete [2, 
3].  Considering the previous section, this sounds 
unpromising but what does it actually mean in practice?  Is 
it going to be difficult to write a program for the task? 

In fact, writing the program, a crude one at least, can be 
fairly routine.  The obvious solution will be to generate 
each permutation of the n jobs in turn, calculate the total 
delay for each and progressively record the best.  There 
are a number of approaches available: Knuth [4] outlines a 
recursive method; a more mundane iterative process is 
offered here. 

 

P 

NP-complete 

NP  



If we plan to begin at a known starting point (the 
‘lowest’ permutation, 1,2,3,...,n, being the natural choice) 
and continue until a recognisable end is encountered 
(again, the ‘highest’ permutation, n,...,3,2,1 , the obvious 
candidate) then, save fo r the trivial task of evaluating each 
permutation against the delay matrix, the only requirement 
is for a routine to successively generate each permutation 
from its predecessor.  Figure 8 gives such a function, used 

within a harness program to simply output each 
permutation rather that applying the delay matrix.  Its 
principles are outlined in Figure 9. 

 
 
 
 
 

 
 
 

// Generating permutations of integers 
 
#include <iostream.h> 
 
int i,j,k, n, a[10], b[10], done = 0; 
long int count; 
 
main() { 
 
   cout << "Enter n: "; 
   cin >> n; 
   for (i = 0; i < n; ++i) 
      a[i] = i + 1;              // Initialise array: 1,2,3,..,n 
 
   do { 
      cout << ++count << "   ";  // Output count 
      for (i = 0; i < n; ++i) 
         cout << " " << a[i];    // Output permutation 
      cout << "\n"; 
 
      if (n == 1) 
         done = 1;               // Only one permutation 
      else {                     // Generate next 
         i = n-2; 
         while (a[i] > a[i+1] && i >= 0) 
            --i;          // Find focus (i) 
         if (i < 0) 
            done = 1;          // Last permutation 
         else { 
            j = i + 1; 
 for (k = i + 2; k < n; ++k) 
    if (a[k] > a[i] && a[k] < a[j]) 
       j = k;         // Find new focus (j) 
 k = a[i]; 
 a[i] = a[j];         // Swap foci (i, j) 
 a[j] = k; 
 for (k = i + 1; k < n; ++k) 
    b[k] = a[k];      // Copy rest to dummy 
 for (k = i + 1; k < n; ++k) 
    a[k] = b[n-k+i];  // Read back in reverse 
         } 
      } 
 
   } while (!done); 
} 



 
Figure 8 – Generating Permutations 

 
 



Figure 9 – Iterating Permutations  

 
Working from right to left through the existing 

permutation, all pairs of values with left larger than right 
will represent permutations already considered.  Scope for 
a new ordering arises when a pair is encountered in which 
right is larger than left.  The position of this left value 
becomes the focus for the rearrangement to follow.  Of all 
values to the right of the focus, the minimum value larger 
than the current focus is selected and the two are 
swapped.  All values to the right of the new focus are now 
reversed into ascending order. 

This is not an elegant program – it has been written for 
efficiency – and we expand upon this in the next section.  
In fact however, the problem that arises is not to do with 
the logical difficulty of the program or the performance of 
its main function, but its search complexity.  How many 
permutations is it to generate?  This is simple to calculate.  
The first job may be chosen in n ways, the second in n-1, 
the third in n-2 and so on.  With two jobs left to choose 
between there are 2 choices, which leaves a single choice 
for the last.  The number of possible permutations is 
therefore 

 
p(n)  =  n ×  n-1×  n-2 ×  ... × 2 ×  1  = n!  (1) 

 
which is clearly exponential in form.  Figure 10 shows the 
first few values plotted against 3n for comparison.  It is 
tempting to think that modern computing power will make 
short work of this but a moment’s consideration suggests 
otherwise. 
 

 
 
 
 
 
 
 

 

Figure 10 – The growth of n! 
 

Suppose, for the sake of argument, that, with whatever 
processor we have available, we can use the routine in 
Figure 8 in a program to solve the job-sequencing problem 
for n = 20 maximum.  Consider what is necessary to 
introduce an extra job. 

 
p(21)  =  21!  =  21 × 20!  =  21p(20) (2) 

 
We will need an increase in processing of 21 times to 

deal with the single extra job and 22 ×  21 = 462  times to 
accommodate another two.  To solve the problem for n = 
30 jobs, 109,027,350,432,000  times as much power is 
required!  The problem is genuinely hard!  Whilst it is true 
that there are slightly better methods that this simple 
exhaustive search approach [2, 3], there are none known 
that bring the complexity down to polynomial levels.  The 
options are limited: avoid the problem, deal with it on a 
small scale only or keep searching for an algorithm that 
probably does not exist! 

 
4. Another Job-Sequencing Problem 
 

However, there is another, more down-to-earth, aspect 
of algorithmic design.  Even for easy problems, it is quite 
possible to write bad programs.  For any given polynomial 
problem, there may be a variety of algorithms available.  
Very poor design may lead to exponential algorithms and 
even among the polynomial options, selecting the best 
may not be a trivial exercise.  Efficiency and inefficiency 
are often disguised.  A second example will serve to 
illustrate a number of these points. 

In fact, a variation of the previous example - a simplified 
one - will serve us well.  Suppose that the machine in 
question can perform only two jobs and that the delay 
between them is no longer a concern.  Suppose, however, 
that job 1 takes 1 second to process, job 2, 2 seconds and 
that the machine can run for n seconds before being reset 



for a new run.  To maximise machine use requires a 
sequence of jobs 1 and 2 of duration n.  How many such 
sequences are there? 

Admittedly, it is not obvious why it might be necessary 
to calculate this figure - the machine would function well 
enough without it.  However it offers us a manageable 
problem to study.  If f(n) represents the number of 
different sequences of jobs 1 and 2 totalling n, how can 
we calculate f(n)? 

The first values are trivial.  For n = 1, there is only one 
possibility - a single job 1, so f(1) = 1.  For n = 2, we 
could run job 1 twice or job 2 once: f(2) = 2 .  To derive a 
general expression for f(n) requires a little analysis. 

Having dealt with n = 1 and n = 2, suppose n ≥ 3 and 
consider the first job.  Job 1 leaves n-1 seconds to fill, 
which can be done in f(n-1) ways and job 2 leaves n-2 
seconds and f(n-2) ways.  This  gives us the relation 
 

f(n)  =  f(n-1) + f(n-2) (3) 
 
which is recognisable as the Fibonacci Sequence in which 
each pair of numbers is added to obtain the next.  A simple 
enough expression, it remains only to turn it into a 
program.  However, without due care, this may be the start 
of our problems. 

There are probably two particularly obvious solutions.  
Firstly, (3) in programming terms is a recursive definition 
and as such can be coded directly.  Figure 11 gives a short 
program using this method.  Secondly, the formula may be 
applied in reverse with each new term being iterated from 
the two before.  Figure 12 uses this approach.  Both 
programs attempt to calculate f(n) for values of n from 3 to 
100, the values of f(1) and f(2) being trivially known. 

 
// Calculating f(n) by recursion 
 
#include <iostream.h> 
 
int n; 
float f(float); 
 
main() { 
   for (n = 3; n <= 100; ++n) 
      cout << "n = " << n << ":  f(n) = " << 
f(n) << "\n"; 
} 
 
float f(float n) { 
   if (n ==1 || n ==2)    // Trivial values 
      return n; 
   else 

 return f(n-1) + f(n-2);   
// Recursive call 

} 
 

Figure 11 – Calculating f(n) Recursively 
 
 
 

// Calculating f(n) by iteration 
 
#include <iostream.h> 
 
int n; 
float fn, fn_1 = 2, fn_2 = 1;                    
// Trivial values 
 
main() { 
   for (n = 3; n <= 100; ++n) { 
      fn = fn_1 + fn_2; fn_2 = fn_1; fn_1 = 
fn;  // Iteration 
      cout << "n = " << n << ":  f(n) = " << 
fn << "\n"; 
   } 
} 
 

Figure 12 – Calculating f(n) Iteratively 
 

Although similar in size, the performance of the two 
programs could not be more different!  While the iterative 
program in Figure 12 runs to completion almost 

instantaneously, the recursive method in Figure 11, after 
initial pace, reaches a point where it slows visibly and 
continues to slow until it practically stops altogether.  
Each new calculation takes longer than the last. 

Figure 13 – Complexity of calculating f(n) Recursively 
 
 



 
 
 
 
 
 

Figure 14 – Complexity of calculating f(n) Iteratively 

 
This behaviour is explained in Figures 13 and 14.  The 

iterative method has polynomial (in fact linear) complexity.  
To derive each successive value requires only a single 
step; its complexity is O(n).  The recursive method, on the 
other hand, calculates each value via two calls to the same 
function which, in turn, makes two more calls, etc.  Its 
complexity is approximately O(2n): it is exponential. 

There is no doubt which of these methods is the better.  
However, there is another, less obvious approach.  A 
mathematician would call (3) a recurrence relation and 
such expressions can often be resolved to give explicit 
values for f(n).  Noting that certain types of relation give 
predictable forms of solution and substituting the known 
initial values of f(1) and f(2), we can derive the expression 
[5] 
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which suggests a method of solution with no repetition at 
all.  The program in Figure 15 implements this method 
using standard library functions and, on the surface, 
appears efficient. 
 
// Calculating f(n) in one step? 
 
#include <iostream.h> 
#include <math.h> 
 
int n; 
 
main() { 
   for (n = 3; n <= 100; ++n) 
      cout << "n = " << n << ":  f(n) = " << 
         (pow((1 + sqrt(5)) / 2, n+1) 
        - pow((1 - sqrt(5)) / 2, n+1)) / 
sqrt(5) << "\n"; 

 
} 
 

Figure 15 – Calculating f(n) in one step?  
 

Unfortunately, there are some hidden dangers here.  
These powerful high-level operations will ultimately have 
to be translated into simple machine code to be executed.  
At this level, the calculations of powers and roots are non-
trivial.  Implementations vary but the square-root 
operation, for example, is likely to be calculated by 
numerical approximation methods, successively 
generating improved versions of the result until the 
required accuracy is obtained.  The apparently banished 
iteration returns!  Although the difference will not show in 
these examples, this method of solution proves to be 
inferior to that of Figure 12. 
 
 
// Calculating f(n) by analysis 
 
#include <iostream.h> 
#include <math.h> 
 
int n; 
float root5 = sqrt(5), 
      term1, factor1 = (1 + root5) / 2, 
      term2, factor2 = (1 - root5) / 2; 
 
main() { 
   term1 = factor1 * factor1 * factor1; 
   term2 = factor2 * factor2 * factor2;     
// Initialise 
   for (n = 3; n <= 100; ++n) { 
      term1 *= factor1; term2 *= factor2;   
// Iterate 
      cout << "n = " << n << ":  f(n) = " 
           << (term1 - term2) / root5 << 
"\n"; 
   } 
} 

 
Figure 16 – Calculating f(n) by analysis 

 
However, using the information from (4) wisely, can 

make a difference.  Looking carefully, we see that only 
integer powers are needed, the same exponents for each 
term and increasing in line with (or one in advance of) n.  
Also, only a single root value is ever required.  The 
program in Figure 16 exploits these features by calculating 
√5 once at the start, subsequently using the calculated 
value, and generating each power term from the previous 
one.  It is not superior to the method of Figure 12 (and it is 
certainly not elegant) but it is comparable. 

 



5. Summary  
 

A number of points should be highlighted in 
conclusion.  First and foremost, presumably, is the fact 
that the status of some of these complexity classes is 
unknown - and may well remain so.  In fact, unless a 
‘magic’ polynomial for an NP-complete problem is found, 
this has little practical effect.  Complexity theorists 
generally accept the relationship in Figure 6 and 
algorithmic designers are all too familiar with the line 
between polynomial and exponential problems and 
algorithms.  Making the best of a bad lot is the general 
order. 

The first job-sequencing example shows that it is not 
difficult to write a program for a problem that cannot 
realistically be solved!  The hitch is that the program will 
never finish for larger input values.  A different point is 
worth making in conclusion.  The program in Figure 6 
could be made considerably more readable by structuring 
it with more functions.  In fact, according to the principles 
of good design, this was indeed the form in which it was 
originally developed.  However, removing subroutine calls 
and parameter passing from the underlying implementation 
improves efficiency substantially.  The resultant single-
block program is not easy to follow and would not please 
the purists but it is a ‘better’ program from our point of 
view.  Of course, due to the exponential nature of the 
problem, it has an insignificant overall effect of the size of 
input with which we are able to deal but it could make a 
useful difference to the limit value.  In the drive for 
program speed, elegance and efficiency rarely coexist! 

The second job-sequencing example introduces some 
similar lessons.  Careless design can produce a complex 
program for a simple problem.  More specifically, recursion 
as a programming tool is often elegant, rarely efficient - or 
at least, rarely more efficient.  In this case its use is 
disastrous.  We also need to be wary of apparent ‘miracle’ 
solutions.  They may not be all they seem.  However, a 
close look at a problem can reveal a trick or two, 
sometimes more functional than aesthetically pleasing.  
Again the ‘artistic’ programmer and the efficiency seeker 
often steer different courses. 
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