
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

11-1-2006

Complexity Issues in Control Software Design: A
practical perspective
Stuart Cunningham
Glyndwr University, s.cunningham@glyndwr.ac.uk

Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer and Systems Architecture Commons, Digital Communications and

Networking Commons, Hardware Systems Commons, and the Systems and Communications
Commons

This Conference Paper is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been
accepted for inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Cunningham, S. & Grout, V., (2006), ‘Complexity Issues in Control Software Design: A practical perspective’. [Paper presented to the
19th ISCA International Conference on Computer Applications in Industry and Engineering (CAINE-2006), 13th-15th November
2006]. Las Vegas, Nevada, USA: International Society for Computers and Their Applications (ISCA), pp167-174.

http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Complexity Issues in Control Software Design: A practical perspective

Abstract
There is a tendency to overlook or play down software issues in industrial systems design. However the very
best hardware will only be as effective as the programs that control it. The search for a software solution to a
problem should not stop with the discovery of the first approach that works, or appears to work. Many
problems support good and bad methods of solution and determining the best often requires deeper
consideration. In this paper we present some rudimentary introductions and examples of common
computational challenges. We aim to highlight key issues for consideration when implementing control
systems which otherwise might be unintentionally overlooked.

Keywords
Computational complexity, Control software, Algorithmic design, Optimization, Iteration, Recursion

Disciplines
Computer and Systems Architecture | Digital Communications and Networking | Hardware Systems |
Systems and Communications

Comments
Copyright © 2006 ISCA and authors. This paper was presented at the19th ISCA International Conference on
Computer Applications in Industry and Engineering (CAINE-2006), 13th-15th November 2006, which was
held in Las Vegas, Nevada, USA. The conference organiser’s website is located at http://www.isca-hq.org/
where a copy of the conference proceedings can also be purchased.

This conference paper is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/74

http://www.isca-hq.org/
http://epubs.glyndwr.ac.uk/cair/74?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages

Complexity Issues in Control Software Design: A Practical Perspective

Vic Grout & Stuart Cunningham
Centre for Applied Internet Research (CAIR), University of Wales

NEWI, Plas Coch Campus, Mold Road, Wrexham, LL11 2AW, North Wales, UK
Tel: +44(0)1978 293583 Fax: +44(0)1978 293168

v.grout@newi.ac.uk | s.cunningham@newi.ac.uk

Abstract

There is a tendency to overlook or play down software
issues in industrial systems design. However the very
best hardware will only be as effective as the programs
that control it. The search for a software solution to a
problem should not stop with the discovery of the first
approach that works, or appears to work. Many
problems support good and bad methods of solution and
determining the best often requires deeper consideration.

In this paper we present some rudimentary
introductions and examples of common computational
challenges. We aim to highlight key issues for
consideration when implementing control systems which
otherwise might be unintentionally overlooked.

1. Introduction

When we look at an industrial system, we see its
hardware. The innovative technology and precision
engineering are apparent. The years of research and
subtleties of design are often implicit but equally obvious.
Less tangible still (by definition) and often overlooked is
the software that makes it all work. However without this
software, of course, work it will not!

This might appear a trivial observation, sufficient to irk
a software engineer maybe but nothing more. However to
take on a design project with such a dismissive view of the
software’s importance will be to compromise the system’s
effectiveness from the outset. Worse, it may present
obstacles to the success of the project that no amount of
state-of-the-art hardware can overcome. Worse again,
some things are not even worth trying!

This article offers a brief insight into some of the issues
involved in problem-solving software design through two
simple applications. Very simple in fact - the complexity of
most industrial software systems would defy analysis in a
few pages. Instead we look first at a generic form of
problem which itself proves to be much too difficult with
which to deal, then secondly at a cut-down version.
Before that though, some basic principles are introduced.

2. The Limits of Algorithms

Actually some problems cannot be solved - at all that
is. There are some problems for which it is impossible to
produce a program that will deal with them. The most
famous of these is Alan Turing’s Halting Problem
although there are many others. The Halting Problem asks
for a program that will determine whether a second
program will terminate naturally or become locked in an
infinite loop. No such (first) program can exist. Although
given examples of (second) programs can be dealt with
individually, it is impossible to write a (first) program
capable of pronouncing for all of them. We do not attempt
to prove this statement here [1].

In laying aside the unsolvable problems to concentrate
on the solvable, we immediately exhaust the typical
mathematician’s interest in the subject. However, among
solvable problems, there appear to some that are
essentially harder than others. The study of such
differences has occupied the computational mathematician
for the last two or three decades and some questions
remain unanswered. That which is understood becomes
the realm of the algorithmic designer. An algorithm is
simply a program in abstract form - that is, independent of
language or implementation.

// Skeleton program - 1D loop

 :
main() {

 :
 for (i = 1; i <= n; ++i) {
 :
 }
 :

}

Figure 1 - A One-Dimensional Loop

1

10

100

1000

10000

100000

1000000

10 20 30 40 50 60 70 80 90 100

n

n1

n2

n3
// Skeleton program - 3D loop

 :

main() {

 :

 for (i = 1; i <= n; ++i) {

 :

 for (j = 1; j <= n; ++j) {

 :

 for (k = 1; k <= n; ++k) {

 :

 }

 :

 }

 :

 }

 :

}

Figure 2 - A Three-Dimensional Loop

Consider the simple code fragment in Figure 1. Here a
single loop runs a control variable from 1 to some value n.
If n is the key value of the program, the number of data
items to be processed, say, and there are no more
significant loops, then the complexity of the program can
be seen to increase linearly with n. In fact we c an express
this complexity as O(n) . There is no need to consider the
number of instructions within the loop or the number of
similar loops. In Figure 2, by the same process, the
complexity can be written as O(n3), no longer linear in n
but polynomial. Any program having a complexity
expression of the form O(nx) can be described as having
polynomial complexity. Lesser exponents may be ignored:
O(n4 + n2), for example, can be simplified to O(n4) since,
for increasing values of n, n4 becomes the dominant term.
The complexity of a program is effectively a measure of
how much it will begin to slow down as n increases.
Programs with polynomial complexity of O(nx) will slow
down more for larger values of x as illustrated in Figure 3.
However, there are worse cases to consider.

Figure 3 – Various nx Curves
Figure 4 – Various n3 and 3n Curves

Some programs will have greater than polynomial

complexity – quite how, we shall see in the next two
sections. The common term for this is exponential
complexity. This is a slight generalisation but will serve us
well enough. O(xn) is the generic form of exponential
complexity. Figure 4, for example, shows how 3n increases
compared to n3 as n increases. In simple terms, programs
of polynomial complexity are generally acceptable - those
of exponential complexity, not.

These descriptions of program complexity can be
equally applied to the problems they are attempting to
solve providing, that is, that we can be sure we have the
most efficient program for a given problem. As we shall
see later, there are good and bad ways of writing programs
to solve the same problem. To be able to accurately
classify a problem we need to know the best algorithm.

Many problems, and most ‘every-day’ ones, are known
to have poly nomial complexity. These are collectively
identified as the class P. The wider class of problems
having polynomial or exponential complexity is generally

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

n

n3

3n

referred to as NP. Technically, NP stands for ‘non-
deterministic polynomial’ rather than ‘non-polynomial’, as
might be supposed, but that need not concern us here.
Clearly P is a subset of NP as shown in Figure 5.

Figure 5 – The Classes P and NP

Figure 6 – The Classes P, NP and NP-Complete?

A reasonable question would be to ask if there really
are any problems in NP that are not in P or whether they
are actually the same class. In other words, are there any
problems that are genuinely exponentially complex or can
all problems be solved by a polynomial algorithm if only
we can find it? Are exponentially complex algorithms
necessary in some cases or simply the result of poor
design?

Essentially, the answer to this question is unknown.
The current situation is summarised as follows:

1. There are many problems for which polynomial

algorithms are known.
2. There are many problems for which polynomial

algorithms are not known.
3. There are a number of these problems, for which

polynomial algorithms are not known, which are
known to be equivalent to each other in the sense
that the discovery of a polynomial algorithm for one
would effectively provide polynomial algorithms for
all. This class of problems is referred to as NP-
complete.

4. It has not been proved that no polynomial algorithm
exists for any NP-complete problem.

Points 1, 2 and 3 suggest a relationship between the

classes as shown in Figure 6. However, point 4 means we
cannot be sure. The discovery of a proof that NP-
complete problems can not be solved by polynomial
algorithms would dispel all doubt. The discovery of such
a polynomial algorithm, however, would be unexpected to
say the least.

3. A Job-Sequencing Problem

All of this may sound a little theoretical, lacking
practicality, so we introduce an example. Consider a piece
of machinery, able to perform a number of processes.
Suppose, in general operation, that this multi-functional
device is to perform n tasks, each of which involves the
machine starting and finishing in a number of different
positions or settings. If we represent the time taken to
reset the machine to start job j after finishing job i by tij
then a complete description of the delays involved is
given by the matrix T = (tij) 1≤ i,j ≤ n, an example of which
is given in Figure 7.

Figure 7 – A Delay Matrix Example

Now
consider
the
software
controlling
this device.
A useful
feature
would be
for the
system to
automaticall
y calculate
in which
order the
jobs should best be executed. This optimum would be an
ordering of the jobs 1, 2, ... i, j, ..., n such that the sum of
the tijs is minimised. If there is more than one round of
jobs to process then it will be necessary to reset the
machine to start the first job after the last each time and
the problem becomes cyclic.

This question, often rephrased as the Travelling
Salesman Problem or TSP is known to be NP-complete [2,
3]. Considering the previous section, this sounds
unpromising but what does it actually mean in practice? Is
it going to be difficult to write a program for the task?

In fact, writing the program, a crude one at least, can be
fairly routine. The obvious solution will be to generate
each permutation of the n jobs in turn, calculate the total
delay for each and progressively record the best. There
are a number of approaches available: Knuth [4] outlines a
recursive method; a more mundane iterative process is
offered here.

P

NP-complete

NP

If we plan to begin at a known starting point (the
‘lowest’ permutation, 1,2,3,...,n, being the natural choice)
and continue until a recognisable end is encountered
(again, the ‘highest’ permutation, n,...,3,2,1 , the obvious
candidate) then, save fo r the trivial task of evaluating each
permutation against the delay matrix, the only requirement
is for a routine to successively generate each permutation
from its predecessor. Figure 8 gives such a function, used

within a harness program to simply output each
permutation rather that applying the delay matrix. Its
principles are outlined in Figure 9.

// Generating permutations of integers

#include <iostream.h>

int i,j,k, n, a[10], b[10], done = 0;
long int count;

main() {

 cout << "Enter n: ";
 cin >> n;
 for (i = 0; i < n; ++i)
 a[i] = i + 1; // Initialise array: 1,2,3,..,n

 do {
 cout << ++count << " "; // Output count
 for (i = 0; i < n; ++i)
 cout << " " << a[i]; // Output permutation
 cout << "\n";

 if (n == 1)
 done = 1; // Only one permutation
 else { // Generate next
 i = n-2;
 while (a[i] > a[i+1] && i >= 0)
 --i; // Find focus (i)
 if (i < 0)
 done = 1; // Last permutation
 else {
 j = i + 1;
 for (k = i + 2; k < n; ++k)
 if (a[k] > a[i] && a[k] < a[j])
 j = k; // Find new focus (j)
 k = a[i];
 a[i] = a[j]; // Swap foci (i, j)
 a[j] = k;
 for (k = i + 1; k < n; ++k)
 b[k] = a[k]; // Copy rest to dummy
 for (k = i + 1; k < n; ++k)
 a[k] = b[n-k+i]; // Read back in reverse
 }
 }

 } while (!done);
}

Figure 8 – Generating Permutations

Figure 9 – Iterating Permutations

Working from right to left through the existing

permutation, all pairs of values with left larger than right
will represent permutations already considered. Scope for
a new ordering arises when a pair is encountered in which
right is larger than left. The position of this left value
becomes the focus for the rearrangement to follow. Of all
values to the right of the focus, the minimum value larger
than the current focus is selected and the two are
swapped. All values to the right of the new focus are now
reversed into ascending order.

This is not an elegant program – it has been written for
efficiency – and we expand upon this in the next section.
In fact however, the problem that arises is not to do with
the logical difficulty of the program or the performance of
its main function, but its search complexity. How many
permutations is it to generate? This is simple to calculate.
The first job may be chosen in n ways, the second in n-1,
the third in n-2 and so on. With two jobs left to choose
between there are 2 choices, which leaves a single choice
for the last. The number of possible permutations is
therefore

p(n) = n × n-1× n-2 × ... × 2 × 1 = n! (1)

which is clearly exponential in form. Figure 10 shows the
first few values plotted against 3n for comparison. It is
tempting to think that modern computing power will make
short work of this but a moment’s consideration suggests
otherwise.

Figure 10 – The growth of n!

Suppose, for the sake of argument, that, with whatever
processor we have available, we can use the routine in
Figure 8 in a program to solve the job-sequencing problem
for n = 20 maximum. Consider what is necessary to
introduce an extra job.

p(21) = 21! = 21 × 20! = 21p(20) (2)

We will need an increase in processing of 21 times to

deal with the single extra job and 22 × 21 = 462 times to
accommodate another two. To solve the problem for n =
30 jobs, 109,027,350,432,000 times as much power is
required! The problem is genuinely hard! Whilst it is true
that there are slightly better methods that this simple
exhaustive search approach [2, 3], there are none known
that bring the complexity down to polynomial levels. The
options are limited: avoid the problem, deal with it on a
small scale only or keep searching for an algorithm that
probably does not exist!

4. Another Job-Sequencing Problem

However, there is another, more down-to-earth, aspect
of algorithmic design. Even for easy problems, it is quite
possible to write bad programs. For any given polynomial
problem, there may be a variety of algorithms available.
Very poor design may lead to exponential algorithms and
even among the polynomial options, selecting the best
may not be a trivial exercise. Efficiency and inefficiency
are often disguised. A second example will serve to
illustrate a number of these points.

In fact, a variation of the previous example - a simplified
one - will serve us well. Suppose that the machine in
question can perform only two jobs and that the delay
between them is no longer a concern. Suppose, however,
that job 1 takes 1 second to process, job 2, 2 seconds and
that the machine can run for n seconds before being reset

for a new run. To maximise machine use requires a
sequence of jobs 1 and 2 of duration n. How many such
sequences are there?

Admittedly, it is not obvious why it might be necessary
to calculate this figure - the machine would function well
enough without it. However it offers us a manageable
problem to study. If f(n) represents the number of
different sequences of jobs 1 and 2 totalling n, how can
we calculate f(n)?

The first values are trivial. For n = 1, there is only one
possibility - a single job 1, so f(1) = 1. For n = 2, we
could run job 1 twice or job 2 once: f(2) = 2 . To derive a
general expression for f(n) requires a little analysis.

Having dealt with n = 1 and n = 2, suppose n ≥ 3 and
consider the first job. Job 1 leaves n-1 seconds to fill,
which can be done in f(n-1) ways and job 2 leaves n-2
seconds and f(n-2) ways. This gives us the relation

f(n) = f(n-1) + f(n-2) (3)

which is recognisable as the Fibonacci Sequence in which
each pair of numbers is added to obtain the next. A simple
enough expression, it remains only to turn it into a
program. However, without due care, this may be the start
of our problems.

There are probably two particularly obvious solutions.
Firstly, (3) in programming terms is a recursive definition
and as such can be coded directly. Figure 11 gives a short
program using this method. Secondly, the formula may be
applied in reverse with each new term being iterated from
the two before. Figure 12 uses this approach. Both
programs attempt to calculate f(n) for values of n from 3 to
100, the values of f(1) and f(2) being trivially known.

// Calculating f(n) by recursion

#include <iostream.h>

int n;
float f(float);

main() {
 for (n = 3; n <= 100; ++n)
 cout << "n = " << n << ": f(n) = " <<
f(n) << "\n";
}

float f(float n) {
 if (n ==1 || n ==2) // Trivial values
 return n;
 else

 return f(n-1) + f(n-2);
// Recursive call

}

Figure 11 – Calculating f(n) Recursively

// Calculating f(n) by iteration

#include <iostream.h>

int n;
float fn, fn_1 = 2, fn_2 = 1;
// Trivial values

main() {
 for (n = 3; n <= 100; ++n) {
 fn = fn_1 + fn_2; fn_2 = fn_1; fn_1 =
fn; // Iteration
 cout << "n = " << n << ": f(n) = " <<
fn << "\n";
 }
}

Figure 12 – Calculating f(n) Iteratively

Although similar in size, the performance of the two
programs could not be more different! While the iterative
program in Figure 12 runs to completion almost

instantaneously, the recursive method in Figure 11, after
initial pace, reaches a point where it slows visibly and
continues to slow until it practically stops altogether.
Each new calculation takes longer than the last.

Figure 13 – Complexity of calculating f(n) Recursively

Figure 14 – Complexity of calculating f(n) Iteratively

This behaviour is explained in Figures 13 and 14. The

iterative method has polynomial (in fact linear) complexity.
To derive each successive value requires only a single
step; its complexity is O(n). The recursive method, on the
other hand, calculates each value via two calls to the same
function which, in turn, makes two more calls, etc. Its
complexity is approximately O(2n): it is exponential.

There is no doubt which of these methods is the better.
However, there is another, less obvious approach. A
mathematician would call (3) a recurrence relation and
such expressions can often be resolved to give explicit
values for f(n). Noting that certain types of relation give
predictable forms of solution and substituting the known
initial values of f(1) and f(2), we can derive the expression
[5]

 −−

 +=
++ 11

2
51

2
51

5
1)(

nn

nf (4)

which suggests a method of solution with no repetition at
all. The program in Figure 15 implements this method
using standard library functions and, on the surface,
appears efficient.

// Calculating f(n) in one step?

#include <iostream.h>
#include <math.h>

int n;

main() {
 for (n = 3; n <= 100; ++n)
 cout << "n = " << n << ": f(n) = " <<
 (pow((1 + sqrt(5)) / 2, n+1)
 - pow((1 - sqrt(5)) / 2, n+1)) /
sqrt(5) << "\n";

}

Figure 15 – Calculating f(n) in one step?

Unfortunately, there are some hidden dangers here.
These powerful high-level operations will ultimately have
to be translated into simple machine code to be executed.
At this level, the calculations of powers and roots are non-
trivial. Implementations vary but the square-root
operation, for example, is likely to be calculated by
numerical approximation methods, successively
generating improved versions of the result until the
required accuracy is obtained. The apparently banished
iteration returns! Although the difference will not show in
these examples, this method of solution proves to be
inferior to that of Figure 12.

// Calculating f(n) by analysis

#include <iostream.h>
#include <math.h>

int n;
float root5 = sqrt(5),
 term1, factor1 = (1 + root5) / 2,
 term2, factor2 = (1 - root5) / 2;

main() {
 term1 = factor1 * factor1 * factor1;
 term2 = factor2 * factor2 * factor2;
// Initialise
 for (n = 3; n <= 100; ++n) {
 term1 *= factor1; term2 *= factor2;
// Iterate
 cout << "n = " << n << ": f(n) = "
 << (term1 - term2) / root5 <<
"\n";
 }
}

Figure 16 – Calculating f(n) by analysis

However, using the information from (4) wisely, can

make a difference. Looking carefully, we see that only
integer powers are needed, the same exponents for each
term and increasing in line with (or one in advance of) n.
Also, only a single root value is ever required. The
program in Figure 16 exploits these features by calculating
√5 once at the start, subsequently using the calculated
value, and generating each power term from the previous
one. It is not superior to the method of Figure 12 (and it is
certainly not elegant) but it is comparable.

5. Summary

A number of points should be highlighted in
conclusion. First and foremost, presumably, is the fact
that the status of some of these complexity classes is
unknown - and may well remain so. In fact, unless a
‘magic’ polynomial for an NP-complete problem is found,
this has little practical effect. Complexity theorists
generally accept the relationship in Figure 6 and
algorithmic designers are all too familiar with the line
between polynomial and exponential problems and
algorithms. Making the best of a bad lot is the general
order.

The first job-sequencing example shows that it is not
difficult to write a program for a problem that cannot
realistically be solved! The hitch is that the program will
never finish for larger input values. A different point is
worth making in conclusion. The program in Figure 6
could be made considerably more readable by structuring
it with more functions. In fact, according to the principles
of good design, this was indeed the form in which it was
originally developed. However, removing subroutine calls
and parameter passing from the underlying implementation
improves efficiency substantially. The resultant single-
block program is not easy to follow and would not please
the purists but it is a ‘better’ program from our point of
view. Of course, due to the exponential nature of the
problem, it has an insignificant overall effect of the size of
input with which we are able to deal but it could make a
useful difference to the limit value. In the drive for
program speed, elegance and efficiency rarely coexist!

The second job-sequencing example introduces some
similar lessons. Careless design can produce a complex
program for a simple problem. More specifically, recursion
as a programming tool is often elegant, rarely efficient - or
at least, rarely more efficient. In this case its use is
disastrous. We also need to be wary of apparent ‘miracle’
solutions. They may not be all they seem. However, a
close look at a problem can reveal a trick or two,
sometimes more functional than aesthetically pleasing.
Again the ‘artistic’ programmer and the efficiency seeker
often steer different courses.

6. References

[1] Cutland, N.J., Computability: An Introduction to Recursive
Function Theory, Cambridge University Press, 1980.

[2] Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. &
Shmoys, D.B., The Travelling Salesman Problem, Wiley, 1985.

[3] Gutin, G., Punnen, A.P., The Travelling Salesman Problem
and its Variations, Kluwer Academic Publishers, 2002.

[4] Knuth, D.E., The Art of Computer Programming , Vol III:
Sorting and Searching, Addison Wesley, 1998.

[5] Anderson, I., A First Course in Combinatorial Mathematics ,
Clarendon Press, 1989.

	Glyndŵr University
	Glyndŵr University Research Online
	11-1-2006

	Complexity Issues in Control Software Design: A practical perspective
	Stuart Cunningham
	Vic Grout
	Recommended Citation

	Complexity Issues in Control Software Design: A practical perspective
	Abstract
	Keywords
	Disciplines
	Comments

