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GASPAD: A General and Efficient mm-wave
Integrated Circuit Synthesis Method Based on
Surrogate Model Assisted Evolutionary Algorithm

Bo Liu, Dixian Zhao, Patrick Reynaert and Georges Gielen, Fellow, IEEE

Abstract—The design and optimization (both sizing and lay-
out) of mm-wave integrated circuits (ICs) have attracted much
attention due to the growing demand in industry. However,
available manual design and synthesis methods suffer from a
high dependence on design experience, being inefficient or not
general enough. To address this problem, a new method, called
general mm-wave IC synthesis based on Gaussian process model
assisted differential evolution (GASPAD), is proposed in this
paper. A medium-scale computationally expensive constrained
optimization problem must be solved for the targeted mm-wave
IC design problem. Besides the basic techniques of using a
global optimization algorithm to obtain highly optimized design
solutions and using surrogate models to obtain a high efficiency,
a surrogate model-aware search mechanism (SMAS) for tackling
the several tens of design variables (medium scale) and a method
to appropriately integrate constraint handling techniques into S-
MAS for tackling the multiple (high-) performance specifications
are proposed. Experiments on two 60GHz power amplifiers in
a 65nm CMOS technology and two mathematical benchmark
problems are carried out. Comparisons with the state-of-art
provide evidence of the important advantages of GASPAD in
terms of solution quality and efficiency.

Index Terms—mm-wave integrated circuit design automation,
high-frequency integrated circuit, RF circuit synthesis, surrogate
model assisted evolutionary computation, expensive optimization,
Gaussian process

I. INTRODUCTION

In recent years, design and optimization methodologies for
mm-wave frequency integrated circuits (IC) are attracting more
and more attention. This trend will continue in the foreseeable
future, since the demand for high-data-rate wireless commu-
nications is constantly increasing [1]. However, mm-wave | (8
design still highly depends on the designer’s experience. The
design procedure is often time consuming and often gets sub-
optimal results. Two important reasons for this are:

« The equivalent circuit models of integrated passive com-
ponents (e.g., inductor, transformer), which are critical in
radio-frequency (RF) ICs, are narrow-band models. They
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are not sufficient for mm-wave circuit simulation where
the distributed effects of the passive components have to
be taken into account. As a result, the designers are forced
to rely on experience, intuition and time consuming
electromagnetic (EM) simulators to predict the circuit
performance and revise the design parameters. The design
procedure involves quite a number of iterations and is
time consuming even for experienced designers.

o The traditional mm-wave IC design method relies on
a systematic step by step design procedure, but it is
sometimes difficult to optimize the desired circuit perfor-
mance. Take for example the design of power amplifier
(PA). Most mm-wave PA designs optimize the saturated
output power (Ps,) and consequently, the maximum
power added efficiency (PAEQP;,,). However, opti-
mizing the PAFE at the 1dB compression point (P145)
is more important to have a high average efficiency
when transmitting modulated signals (e.g., 16QAM) [2].
Nevertheless, it is not easy to find out the optimal load
impedance (by load-pull simulation) and the optimal bias
point to optimize PAE@Pi3p by the traditional PA
design method.

In contrast, RF IC synthesis follows the “simulation and
optimization” problem solving automation method [3]. The
above challenges can therefore be addressed. To that end,
powerful and efficient design automation techniques for mm-
wave ICs are needed.

Obtaining highly optimized design solutions (effectiveness)
in a practical time (efficiency) is the common requirement
of IC synthesis methods. In literature, the high-frequency IC
synthesis research can be divided into three subareas with
different requirements on effectiveness and efficiency:

« low-GHz RF IC synthesis
Some successful research works are available in this area
[3], [4], [5], [6], [7] and the main focus is the effective-
ness, or the optimality. The novelty is computationally
cheap parasitic-aware models for passive components are
generated and are used for simulation. Like many analog
circuit sizing methods, evolutionary algorithms (EAs)
are used to obtain highly optimized design solutions.
Mathematically, they solve a constrained optimization
problem, assuming that the number of simulations is not a
limitation. A few hundreds of additional simulations can
be used for obtaining solutions with better quality. In con-
trast, the following two subareas also try to provide high-



quality solutions to constrained optimization problems,
but with the assumption that the number of simulations
is limited, which is restricted by the synthesis time.

» mm-wave IC synthesis focusing on small-signal perfor-
mance optimization
The authors proposed the first synthesis method for mm-
wave ICs working at 100GHz or above, called efficient
machine learning-based differential evolution (EMLDE)
[8]. Due to the fp of many technologies (e.g., 90nm,
65nm CMOS), maximizing the power gain (small-signal
performance) is often the main consideration for ICs
working at 100GHz or above. In this area, besides using
an EA to achieve highly optimized design solutions,
efficiency becomes the main challenge, since at such
frequencies computationally expensive EM simulation is
unavoidable. When directly embedding the EM simu-
lation into the EAs, an impractically long optimization
time will result [8]. A surrogate model assisted evo-
lutionary algorithm (SAEA) was introduced into mm-
wave IC synthesis in EMLDE. A Gaussian Process (GP)
surrogate model was employed to replace many expensive
EM simulations. A challenge in SAEA research is the
“curse of dimensionality”. When an optimization problem
has 20 to 30 design variables or more, the efficiency
enhancement obtained by traditional SAEA may reduce
considerably [9], [10]. Nevertheless, having 20 to 30
design variables is common in mm-wave IC synthesis.
A decomposition method exploiting the properties of the
targeted problem was proposed for dimension reduction
in EMLDE. A disadvantage of EMLDE, however, is its
somewhat complicated implementation.

« General mm-wave IC synthesis
To the best of our knowledge, there is no available method
for general mm-wave IC synthesis. Again, efficiency
is the bottleneck. For one thing, the computationally
expensive EM simulations are unavoidable. For another
thing, it is difficult to apply the decomposition method for
dimension reduction used in EMLDE. Indeed, EMLDE
relies on the stage-by-stage design method for mm-wave
amplifiers focusing on small-signal performance opti-
mization. Maximizing the power gain (G,) can be consid-
ered separately for each stage. However, both large-signal
and small-signal performances need to be considered for
general mm-wave IC synthesis. For example, for a 60GHz
PA, the PAE, Pigp and G, all need to be maximized.
A stage designed for gain maximization may not be a
good design for efficiency maximization. When using
the decomposition method from EMLDE, appropriate
specifications of all performance metrics for cach stage
are a must, but this is even not easy to specity for well-
experienced designers. In addition, because of the mul-
tiple (high-performance) specifications, good constraint
handling techniques are highly needed, instead of the
static penalty function method in EMLDE that is only
suitable for not tight S-parameter constraints.

This paper proposes the first general method for mm-
wave IC synthesis, which considers both large-signal and

small-signal performances. Mathematically, the mm-wave IC
synthesis problem targeted in this paper is a medium-scale (15-
50 dimensional) computationally expensive constrained opti-
mization problem. As said above, to gain generality, the circuit
must be considered as a whole and the decomposable structure
is lost, introducing again the “curse of dimensionality”. An
SAEA technique for medium-scale expensive optimization
is still an open area in the computational intelligence field.
Moreover, handling constraints in SAEA has not been inves-
tigated well either. To address these problems, a new method,
called General mm-wave IC Synthesis Based on Gaussian
Process Mode] Assisted Differential Evolution (GASPAD), is
proposed. The GASPAD method aims to:

« develop a general mm-wave IC synthesis method starting
from a given circuit topology, performance specifications
and some hints on layout (e.g., the metal layer to be used,
the transistor layout template with different numbers of
fingers), without any initial design nor the individual
specifications of cach stage;

« provide highly optimized results (including both objective
function optimization and the satisfaction of multiple
tight constraints) comparable to the results obtained by
directly using a widely used EA-based constrained opti-
mization method with EM simulations embedded, which
is often the best synthesis method with respect to the
solution quality;

» use much less computational effort compared with us-
ing the above reference method, and as such make the
computation time of the synthesis practical.

The remainder of this paper is organized as follows. Section
II introduces the motivations and basic techniques. Section
III presents the GASPAD method, including its main ideas,
the general framework and the parameter settings. Section IV
tests GASPAD on two 60GHz 65nm PAs and mathematical
benchmark problems. Comparisons to related published results
using the selected circuit examples are carried out, as well
as comparisons with the method of directly using EA with
exact function evaluations using selected benchmark problems.
Concluding remarks are presented in Section V.

II. MOTIVATIONS AND BASIC TECHNIQUES

A. Challenges for General mm-wave IC Synthesis and Moti-
vations of the GASPAD Approach

General mm-wave IC synthesis involves a medium-scale
(15-50 dimensional) computationally expensive constrained
optimization problem. A promising solution method is SAEA,
which employs surrogate models to replace computationally
expensive EM simulations. SAEAs have been applied to mm-
wave passive component, IC and antenna synthesis [11],
[12], [8]. Its clear advantage in cfficiency compared to off-
line surrogate model-based methods is discussed in [11].
However, to the best of our knowledge, almost all of these
works focus on small-scale problems (i.e., about 5 design
variables). Although EMLDE [8] solves medium-scale mm-
wave IC synthesis problems, it transforms the problem to a
small-scale one, and it is difficult to apply the method for



dimension reduction to general mm-wave IC synthesis, as has
been discussed in Section L

The reason for this “curse of dimensionality” is as follows.
A linear increase of the number of design variables leads
to an exponential increase of the design space. The newly
generated candidate designs in many iterations often spread in
various subregions of the design space. To construct reliable
surrogate models for prediction or prescreening for the next
step of optimization, sufficient training data points around the
newly generated candidate designs are necessary, but this is
limited by the allowed number of EM simulations (synthesis
time). Therefore, it is difficult for a traditional SAEA-based
synthesis method to obtain a highly optimized design in an
efficient manner for the targeted synthesis problem.

In [10], the authors proposed a novel SAEA for medium-
scale computationally expensive optimization, called GPEME.
GPEME achieves a comparable solution quality and 2-8
times less expensive exact function evaluations compared
to three state-of-the-art SAEAs for medium-scale expensive
optimization problems. However, GPEME is for unconstrained
optimization. That is another challenge for general mm-wave
IC synthesis: when considering both large-signal and small-
signal performances, multiple constraints must be handled,
some of which may even be tight because of the tough
performance specifications. Nevertheless, to the best of our
knowledge, most SAEA-based synthesis methods do not han-
dle constraints or use the static penalty function method to
deal with constraints. (1) shows the penalized cost function:

i=c

)+ Y wi < gile) >
i=1

where the parameters w; are the penalty weighting coefficients.
< gi(w) > returns the absolute value of g;(z) if it is negative,
and zero otherwise, considering the constraints g;(z) = 0,7 =

¢. f(z) is the objective function. Although an SAEA
for unconstramed optimization can directly be used when
optimizing the penalized function f (z), the performance of
the SAEA will be reduced. The reason is that a continuous
and smooth hyper-surface is important for generating high-
quality surrogate models, but instead < g;(z) > are piecewise
functions.

Moreover, for the multiple and tight constraints in general
mm-wave IC synthesis problems, although there are some
state-of-the-art constraint handling methods both in the com-
putational intelligence field [13] and the analog IC sizing field
[14], [15], they rely on population updating of a standard EA,
and are difficult to be applied to some efficient SAEAs.

Therefore, besides the techniques used in previous SAEA-
based synthesis methods, tackling medium-scale problems and
multiple tight constraints at the same time is the key motivation
for GASPAD.

f @)= f( )

B. Gaussian Process Machine Learning and Prescreening

Gaussian process (GP) machine learning is used as the
surrogate modeling method in GASPAD. GP modeling is a
theoretically sound and principled method for determining
the much smaller number of free model parameters when

compared to many other surrogate modeling approaches such
as artificial neural networks [16], [17]. It can also provide an
estimate of the model uncertainty for each predicted point,
which can be interpreted in a very natural way. It will be
discussed now.

1) Gaussian Process Modeling: To model an unknown
function y = f(z),z € R%, GP modeling assumes that f(z)
at any point 2 is a Gaussian random variable N (i, o 2), where
j¢ and ¢ are two constants independent of 2. For any x, f(x)
is a sample of sz + e(x), where ¢(z) ~ N(0,0?). For any
z,z' € RY, ¢(w, '), the correlation between ¢(z) and c(a’),
depends on x — z'. More precisely,

d

c(z,2') = exp(— Z&L’h‘ — z;fP),

i=1

@

where parameter 1 < p; < 2 is related to the smoothness of
f(z) with respect to x;, and parameter 0; > 0 indicates the
importance of z; on f(z). More details about GP modeling
can be found in [18].

2) Hyper Parameter Estimation: Given K  points
#',...,2%X € R® and their f-function values y',...,y%,
then the hyper parameters p, o, #1,...,8q4, and p1,...,pg
can be estimated by maximizing the 11kel1h00d that f(z) = ¢*

atz=2a'(i=1,...,K) [19]:
1 (y—p)TC ' (y - ul)]
— 3
(2ma?)X/2/det(C) P [ 202 3

where (' is a K x K matrix whose (i, j)-element is e(zt, 2%),

y=(y4. .. ,y¥)T and 1 is a K-dimensional column vector
of ones.
To maximize (3), the values of p and o must be:
. 1TC™
A= Trgmi )
1TC-11
and LT
— 111 . 4 il
s2_ W—1)TC7Ny 14 )

K

Substituting (4) and (5) into (3) eliminates the unknown
parameters p and ¢ from (3). As a result, the likelihood
function depends only on 0; and p; for i = 1,...,d. (3)
can then be mdxmuzed to obtain estimates of 0; and P;. The
estimates [i and &2 can then readily be obtained from (4) and
(5).

3) The Best Linear Unbiased Prediction and Pr;edr'crive
Dr‘str:'bufion: Given the hyper parameter estimates 0;, ps, ft

and &2, one can predict y f{n:) at any untested point x
based on the f-function values y* at a* fori=1,... I, The
best linear unbiased predictor of f(a) is [19], [20]
fl@)=p+r"C7 (y—1h) ©)
and its mean squared error is:
20,0 _ A2 T -1, 1=17C"1r)
s*(z)=d*[1—-r"C 7+_W] (7)
where © = (c(z,al), ... c(z,2%))T. N(f(z),s%(x)) can

be regarded as a predictive distribution for f (z) given the
function values y* at o fori=1,..., K.



4) Blind Gaussian Process Modeling: The surrogate mod-
eling mechanism introduced above is called the ordinary
(standard) GP modeling. In the GP modeling of GASPAD,
the linear combination of some basis functions y_ 1, fib;(x)
is used to replace fi to capture a portion of the variations,
which is desirable to represent the general trend of f(x). The
goal is to alleviate the complexity of the standard GP modeling
when the number of design variables is large, so as to improve
the estimation accuracy. This mechanism is called blind GP
modeling [21], [22]. For simplicity and efficiency, only linear,
quadratic items and two factor interactions are considered as
candidate features (b;(x)) in this implementation.

The GP modeling in GASPAD undergoes the following
procedures: (1) Based on the available training data points,
a standard GP model is firstly constructed, obtaining the
estimated hyper parameters. (2) With these hyper parameters
and the candidate features, the b;(z) are ranked based on the
estimated (3;(i = 1,...,m). The ranking follows a Bayes
variable ranking method [21], [22]. (3) The most promising
features among b;(z)(i = 1,...,m) are selected and an
intermediate GP model with the original hyper parameters is
constructed. Its accuracy is then evaluated by a leave-one-out
cross-validation method [21]. This step is repeated until no
accuracy improvement can be made. (4) With the selected fea-
tures and their coefficients, re-optimize the likelihood function
and obtain the final GP model.

5) Lower Confidence Bound: We consider the minimiza-
tion of f(x) in this paper. Given the predictive distribution
N(f(z),s%(z)) for f(z), a lower confidence bound (LCB)
prescreening of f(z) can be defined as [23]:

t{;cé(:fg’;i _)F(:B) - (A)-S(IL) (3)

where w is a constant. The use of LCB prescreening can
conduct explorative global search when using a large w or
conduct fast local search when using a small w. Since flz) is
Gaussian distributed, according to the 3o rule, vghen w =2,
the confidence level of fip(x) to be the LCB of f(a) is about
97%. The comparisons of using different w to define LCB are
detailed in [23], [24].

In GASPAD, we use fiep(z) instead of f(z) itself to
measure the quality of x for the performance serving as
the objective function. For the performances serving as con-
straints, we use the predicted value f(z) itself or w = 0. It is
important to promote explorative global search (by promoting
the evaluation of promising but less explored areas, i.e., with
high s(z) values) when minimizing the objective function,
especially when the objective function is multimodal. On the
other hand, we do not expect that many expensive evaluations
are spent on nearly (but not) feasible solutions with good
objective function values. It is true that such solutions need
protection to maintain the diversity in constraint satisfaction,
but the prediction uncertainty of the constraint functions
provides a natural help. To that end, w is set to 0 for constraint
functions.

C. Differential Evolution

The differential evolution (DE) algorithm is used as the
search engine in our proposed GASPAD algorithm. DE is an
effective and popular global optimization algorithm. It uses
a differential operator to create new candidate solutions [25].
There are quite a few different DE variants. In this paper, we
use DE/best/1 to generate new solutions for prescreening. The
DE/best/1 mutation uses the current best solution as the base
vector, so as to increase the speed of generating promising
candidates.

Suppose that P is a population and the best individual in P
is zbest, Let & = (21, ...,2q4) € R? be an individual solution
in P. To generate a child solution v = (u1,...,uq) for =,
DE/best/1 works as follows.

A donor vector is first produced by mutation:

V= ﬂ;bESt + F- (.'.Url s .,1;7‘2) (9)

where 2™ and 2™ are two different solutions randomly
selected from P and also different from xb¢%t. F' € (0,2
is a control parameter, often called the scaling factor [25].
Then the following crossover operator is applied to produce
the child w:
1 Randomly select a variable index jrana € {1,...,d},
2 For each j = 1 to d, generate a uniformly distributed
random number rand from (0, 1) and set:

e { vy, if (rand < CR)|j = frand
=N
s

otherwise
where CR € [0,1] is a constant called the crossover
rate.

(10)

The DE algorithm is shown to be very powerful for real
parameter optimization problems. For integer parameters (e.g.,
the number of fingers of (ransistors), a quantization method
needs to be used [25], which is the same as that in EMLDE
[8].

III. THE GASPAD METHOD
A. Active and Passive Components in Synthesis

The parasitic-aware transistor library in this paper is bor-
rowed from existing low-GHz RF IC synthesis methods [3]
and is the same as that in EMLDE [8]. The minimum transistor
length and a fixed transistor width are used, while only the
number of fingers is changed. The transistor layouts with
different number of fingers are prepared before the synthesis
and the parasitics of each of them are extracted and saved for
future full-fletched simulations.

At mm-wave frequencies, it is a general routine to employ
integrated transformers for impedance matching between tran-
sistors to reduce the insertion loss and to ensure a compact
layout [26]. However, only using conventional transformers
may not obtain high performance in many occasions [27].
Although the impedance matching conditions can be improved
by carefully tuning the width and diameter of the primary
and secondary windings, the power transfer cfficiency of
the transformer may then be compromised. To address this
problem, a solution is to add transmission lines at the input and
output of the transformer. However, co-optimization of each



Fig. 1. The conventional transformer matching network (4 parameters)

Fig. 2. The transformer with transmission line matching network (10
parameters)

transformer and its transmission lines is not straightforward for
designers, Quite a number of iterations arc required to finalize
such matching network and the performance may still not be
good enough.

In our proposed GASPAD method, the transformer with
transmission lines at its primary and secondary ports is
considered as a single component in synthesis. Clearly, the
tedious tuning of the design parameters of this matching
network based on “experience and trial” is not needed any-
more, but the cost to pay is the higher dimensionality of the
synthesis problem. In other words, we shift the “headache”
of manual design to computational intelligence algorithms,
which requires to develop powerful SAEAs for medium-scale
expensive optimization problems as presented in this paper.

The conventional transformer matching network (XFMR)
and the transformer with transmission line matching network
(XFMRTL) and their design parameters are shown in Fig, 1
and Fig. 2, respectively. Fig. 1 shows the matching network
using the conventional transformer. The design parameters are
the inner diameters of the primary and secondary inductors
(dins, dinp) and the metal width of these two inductors
(ws, wp). Fig. 2 shows the matching network using the
transformer with extra transmission lines, Besides the four
design parameters used in the above transformer, the four
additional design parameters are the length of the transmission
lines (Itp, lts) and the widths of the transmission lines (wtp,
wts). In addition, the distances between the two ports (dpp,

dps) on each side are two new design parameters to enhance
the flexibility, while they are often fixed by designers in the
XFMR matching network.

B. Main Ideas of the SAEA Framework in GASPAD

The SAEA-based synthesis methods for small-scale prob-
lems [8], [11] select in each iteration the best generated candi-
date design based on prescreening for full-fletched simulation,
and then update the population. GASPAD inherits the selection
of the current best candidate design for simulation, but three
substantial algorithmic developments are introduced, which
are the integration of the constraint handling method, the
surrogate model-aware evolutionary search mechanism and the
composition of the training data points.

GASPAD integrates constraint handling into the rules for
ranking the newly generated candidates. In other words, con-
straint satisfaction is considered to define the “best” candidate
design in each iteration. The following ranking rules are
presented:

1: The feasible design solutions (if any) rank higher
than the infeasible design solutions.
2: The feasible design solutions (if any) are ranked

based on the sorting of the objective function val-
ves in ascending order (considering a minimization
problem).

3: The infeasible design solutions are ranked based
on the sorting of the sum of the constraint violation
values in ascending order.

It can be seen that the ranking rules use the basic idea of

a tournament selection method for constrained optimization
[28], which is widely used in the evolutionary computation
(EC) field. Nevertheless, tournament selection based on a stan-
dard EA population is not used, but is revised to focus on the
current best candidate design in order to match the proposed
SAEA. Assuming that the prescreened best candidate design
is a top ranked one in the generated candidate designs, the
evolution can be divided into three phases. From the beginning
to the appearance of the first feasible solution, GASPAD aims
at minimizing the constraint violations (e.g., satisfying the Gy,
PAE specifications). From the appearance of the first feasible
solution to where considerable number of solutions are feasible
in the current parent population, GASPAD searches for both
objective function optimization (e.g., optimizing Pi4p) and
constraint satisfaction. After that till the end of the synthesis,
GASPAD concentrates on optimizing the objective function.
Note that independent surrogate models are constructed for
each constraint, and this does not affect the smoothness and
continuity of the hyper-surface of the objective function and
the constraint functions.

The challenge for SAEA to handle medium-scale synthesis
problems is that the training data (i.e., the evaluated candidate
solutions) for promising subregions may not be sufficient. This
is a contradiction in SAEA, and is especially obvious when
the design space is large, since EA searches the design space
for the sake of optimization, and overlooks the requirement
of producing high-quality surrogate models. The star points in
Fig. 3 show a typical spreading of the training data pool in
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Fig. 3. An illustrative figure for the locations of the training data pool by
different search mechanisms

two of the d dimensions when using standard EA operators
and population updating. The current promising subregion is
shown by the ellipse and a point waiting to be predicted
or prescreened is shown by the cross. It can be seen that
the already evaluated candidate solutions spread in different
search subregions. When using the whole training data pool,
the points far away from the point with the cross will, on the
contrary, deteriorate the quality of the constructed surrogate
model. Note that this is unlike off-line surrogate modeling,
whose training data points are intentionally located almost
uniformly. On the other hand, there are not enough training
data points in the current promising area to produce a high-
quality surrogate model.

Given that the total number of computationally expensive
evaluations (EM simulations) is restricted by the synthesis time
and standard EA operators need to be used, our idea is to
develop a new population updating mechanism in order to
improve the locations of the training data pool (i.e., evaluated
candidate solutions) to help surrogate modeling while keeping
a good optimization ability. We call it surrogate model-
aware evolutionary search (SMAS) mechanism. There are two
elementary factors to achieve this goal: (1) the search should
be concentrated on the current promising area for helping
surrogate modeling and exploitation at the same time; (2) a
reasonable diversity should be maintained to guarantee the
exploration ability. The expected locations of the training data
pool produced by our proposed search mechanism are shown
by circles in Fig, 3.

Instead of using a standard EA population [24] or using
a continuously increasing population [11] in SAEA, the A
current best candidate designs form the parent population (it is
reasonable to assume that the search focuses on the promising
subregion) and the best candidate based on prescreening in
the child population is selected to replace the worst one in

Select Matching -

Network Select training dala
Initialize the -

dalabase Surrogate modeling

l

Prescreening

Stopping
Ye
() T
i

Select the & best Select the most
designs promising solution

l I

Full simulation,
update database

DE operations  |—

Fig. 4. The flow diagram of GASPAD

the parent population at each iteration. In this way, only at
most one candidate is changed in the parent population at
each iteration, so the best candidate in the child solutions in
several consecutive iterations may be quite near (they will then
be simulated and are used as training data). Therefore, the
training data describing the current promising region can be
much denser compared to those generated by a standard EA
population updating. To maintain the exploration ability, the
whole child population is generated by the DE mutation and
crossover operators at each iteration. Our pilot experiments on
more than 10 complex mathematical benchmark problems in
the EC field show good convergence of SMAS.

Appropriate training data points need to be selected to de-
scribe the current promising area considering both the SMAS
mechanism and the constraint satisfaction. In GASPAD, the
nearest T training data from the median of candidates in the
child population waiting to be prescreened / predicted is used.
A single surrogate model is constructed based on them and
is used to prescreen / predict the whole child population. It
is straightforward that the value of 7 is in proportion to the
number of design variables d. This will further be discussed
in Section III (E).

C. The General Framework of the GASPAD Algorithm

GASPAD records all the evaluated solutions and their
function values in a database. Once a full-fletched simulation
has been conducted for a new candidate design =, the z and its
performances y will be added to the database. To initialize the
database, a Design of Experiments method, Latin Hypercube
sampling (LHS) [29], is used to sample a set of initial points
from the search space. This step is the same as in EMLDE.
For details, please see [8].

The flow diagram of the GASPAD method is shown in Fig.
4. Tt works as follows:

Note that the selected candidate solution is not necessarily the real best
one in terms of exact simulation; it is satisfactory that the prescreened best
one is among the top few best candidates in reality.



Step 1: Select the form of the matching network used
(XEMR, XFMRTL). Decide the design space [a, b]%,
where ¢ and b are the lower and upper bounds of the
design variables, respectively.

Step 2: Use LHS to sample o candidate designs from
[@, b]%. Perform full-fletched simulations (EM simu-
lations, circuit simulations) to all of these candidate
designs and let them form the initial database.

Step 3: If a preset stopping criterion is met (e.g., a threshold
of synthesis time, a certain number of iterations),
output the best design in the database; otherwise go
to step 4.

Step 4: Select from the database the A best candidate
designs in terms of simulation results according to
the ranking rules described in Section III (B) to form
a population P,

Step 5: Apply the DE operators ((9) and (10)) on P to
generate A child solutions.

Step 6: Calculate the median of the A child solutions to
obtain the vector mz. Take the T nearest solutions
to mz in the database (based on Euclidean distance)
and their function values (performances) as the train-
ing data to construct GP surrogate models.

Step 7: Prescreen the A child solutions generated in Step 5
by using the GP model with LCB prescreening for
the objective function and the predicted values for
each constraint.

Step 8: Perform full-fletched simulation to the estimated
best child solution from Step 7. Add this evaluated
design and its performances to the database. Go back
to Step 3.

D. Discussions

1) Effectiveness of GASPAD for expensive constrained op-
timization: GASPAD uses the proposed ranking rules with the
SMAS mechanism to address expensive constrained optimiza-
tion problems. One may have two questions: (1) Assuming
surrogate models with good quality can be constructed, can
this new search mechanism solve constrained optimization
problems effectively? (2) Can the surrogate modeling really
work as expected in this framework? Experiments using 10
tightly constrained mathematical benchmark problems [13]
have been carried out and highly optimized results have been
obtained. In the following, we use an example (see P; in the
appendix) to clarify the above two questions.

For the first question, we simulate GASPAD. Step 6 to Step
8 of GASPAD (see Section III (C)) construct the surrogate
model and select the prescreening-based best child solution.
To simulate it, we remove the GP modeling and prescreening,
Instead, we conduct exact function evaluations to all the A
child solutions in each iteration, and randomly select one from
the top -y solutions. «y is set to 5 and 10 runs are performed. The
parameter settings are detailed in Section IV. All the results are
feasible and the worst result is 25.11, compared to the globally
optimum 24.31. Hence, the high search ability of GASPAD is
shown.

For the second question, we conduct exact function evalua-
tions to all the child solutions in each run of GASPAD (not the

simulated GASPAD as above) and calculate the real ranks of
the prescreened best candidates in all the iterations. 10 runs are
performed. The results are similar to the simulated results and
the prescreened best candidate is among the top 3 and top 5
of the child population in 86.1% and 91.1% of the iterations,
respectively. It can be seen that the surrogate modeling and
prescreening work as expected.

The weakness of using penalty functions together with
unconstrained expensive optimization methods was discussed
in Section II (A). A verification is provided here. The same
SMAS mechanism (including parameters) for unconstrained
expensive optimization is applied with a penalized function
of P,. To address the well-known problem of inappropriate
penalty coefficients, we usc a state-of-the-art method, self-
adaptive penalty function (SAPF) [30]. We call this method
SAPF-SMAS. 10 runs for simulated SAPF-SMAS and 10 runs
for real SAPE-SMAS are performed. The simulated SAPF-
SMAS shows similar results compared to GASPAD. However,
the real SAPE-SMAS shows worse results and robustness
compared to GASPAD. All the results are worse than the worst
result of GASPAD and its worst result is 32.66. This shows
that the surrogate modeling and prescreening do not work as
good as expected. The prescreened best candidate is among the
top 3 and top 5 of the child population in 20.6% and 32.2%
of the iterations, respectively, in contrast to that of GASPAD.

2) The advantage of SMAS: The method to integrate sur-
rogate modeling into EA is the key of SAEA research. The
search ability (including optimality and diversity) and the
surrogate model quality need to be considered simultaneously
in order to optimally trade-off the efficiency (number of
simulations) and the effectiveness (solution quality). Many
available methods in the computational intelligence field and
most methods in the EDA field utilize the individual / genera-
tion control-based technique [31], such as [9], [32], [33], [34].
This kind of methods holds the basic idea of using the standard
optimization method to tackle optimality and diversity and
using surrogate model(s) as the major tool only when its
prediction uncertainty is small. Good optimization quality can
thus be maintained. Also owing to this, such methods consume
more expensive evaluations than necessary, since almost all
the subregions visited by the search operators are carefully
modeled, but many of them are far from optimal. In contrast,
SMAS replaces the standard EA population updating by a new
mechanism with the goal of effectively supporting surrogate
modeling with highly reduced needed number of simulations.
At the same time, it maintains the optimality and diversity for
effective search.

Experimental verifications for more than 10 complex bench-
mark problems show the high efficiency and effectiveness of
SMAS. Here we use an example (see P3 in the Appendix,
which is a 30-dimensional highly multimodal problem with
global optimum 0) and compare SMAS with a state-of-
the-art generation control-based method with adaptive local
search and modeling, GS-SOMA [9]. Because there are few
reported SAEA results for expensive constrained optimization
problems, we use unconstrained problems and compare the
results of the SMAS mechanism in GASPAD to published
results of GS-SOMA for P; . The median of the optimal value



using only 1000 exact function evaluations by SMAS over 20
runs is 1.67 (the worst result is 2.83), while the median result
of GS-SOMA using 8000 evaluations is 3.67. (In [9], 8000
evaluations are used).

E. Parameter Settings

There are several control parameters in GASPAD. Besides
some parameters that have been well studied in literature (e.g.
the DE parameters, the LCB parameter), the recommended
setting rules of other parameters are as follows. They are
empirical Tules based on tens of constrained and unconstrained
mathematical benchmark problems with different properties
and scales.

» The scaling factor F' and the crossover rate C'R in the
DE operators: The setting of the DE parameters has been
well investigated. Following [25], we set F' to 0.8, and
CR to 0.8. The setting of CR = 0.8 works well for most
problems. For some very complex or ill-defined problems,
CR can be decreased.

« The number of training data points 7 in the GP modelling:
7 is suggested to be between 5 x d to 7 x d, where d is
the number of design variables.

» w used in LCB: Following the suggestions in [23], [24],
w = 2 is used.

o The number of initial samples «: Our empirical rule is
that « should be set to at least 3 x d or the robustness will
decrease. o is affected by the complexity of the function.
For highly multimodal problems, o = 5 x d is often
enough. We can set o between 60 and 200 for a 15-50
dimensional mm-wave IC synthesis problem.

« The population size A: This is a DE parameter. Although
GASPAD has a completely different population updating
method compared to standard DE, our pilot experiments
showed that the recommended setting of DE population
size [25] is still applicable. Using 30 < A £ 60 often
works well. A large A value causes a slow convergence
and a small value can easily lead to premature conver-
gence.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

PA design is selected as the example of mm-wave IC
design in this section. PA design is very difficult in the
mm-wave IC design area, because there are tedious tuning
iterations between load-pull simulations and the design of
impedance matching networks [26], [27]. Moreover, at mm-
wave frequencies, not only the output matching network, but
also the input and inter-stage matching networks need to
be optimized to ensure sufficient output power and a high
efficiency.

In this section, the GASPAD method is first demonstrated
for the synthesis of two 60GHz PAs in a 65nm CMOS
technology. ADS-Momentum is used as the EM simulator.
Cadence SpectreRF is used as the circuit simulator. The
bounds of the design variables are set both by the design
rules of the technology and the experience of the designer.
The two examples are all constrained optimization problems,
with constraints on the 1dB compression point (P14p) and the

power gain (G,), and the objective function is the power added
efficiency (PAE) at Pyyp. GASPAD stops when the perfor-
mance cannot be improved for 50 consecutive iterations, The
examples are run on an Intel 2.66GHz dual Xeon PC under
the Linux operating system and the MATLAB environmient.
All the time consumptions mentioned in the experiments are
wall clock time.

The performance of an SAEA may be affected by the
random numbers used in the evolution operators. To test
the robustness of GASPAD and to compare GASPAD with
an EA-based constrained optimization method with exact
function evaluations, mathematical benchmark problems are
used. Benchmark problems in the EC field are often complex
problems with different properties, such as having many
locally optimal points, being discontinuous and having tight
constraints. [8] has demonstrated the use of proper benchmark
problems to test RF IC synthesis methods. Two benchmark
problems are used and 20 runs with independent random
numbers are performed for each of them.

The parameter setting rules for the GASPAD method are
demonstrated in Section III (E). Besides the parameters with
a single fixed recommended value (e.g., the DE mutation rate),
as described above, the number of training data points (7) is
set to 5 x d and the population size (X) is set to 40 for all the
experiments in this section. For the number of initial samples
(@), « is set to 120 when the number of design variables is
larger than 30, and o is set to 70 when the number of design
variables is less than or equal to 20. For the GP modeling, the
0oDACE toolbox [22] is used. Note that the design variables
and performances need to be normalized. GP machine learning
assumes that the inputs and outputs are samples of a Gaussian
distributed variable. In our implementation, they are scaled
such that each variable is distributed with a mean of 0 and a
variance of 1.

A. Test Example 1

The first example is a 60GHz two-stage PA with cascode
differential pairs. The transistor in the output stage has six
fingers and the number of fingers of a transistor (n f) in the
driver stage is a design variable. The layouts of the transistors
with different number of fingers are designed beforehand by
the designer. The output load impedance is 50€2. The schemat-
ic is shown in Fig. 5. Because the XFMR matching network
is used, the design variables for the passive components are
dins, dinp, ws and wp for each of the three transformers.
(For details, see Section III (A).) There are 5 biasing voltages:
Vobs Veasts Veaszs Ve and Vio. The ranges for the design
variables are summarized in Table I. There are in total 18
design parameters.

The synthesis problem is:

maximize PAE(QPi4p)
s.t. PldB 2 13dBm (Il)
G, > 10dB

After 204 evaluations, GASPAD obtained the optimized
design. The layout of the synthesized PA is shown in Fig.
6. The 1dB compression point is 14.87 dBm, the power added
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Fig. 5. Schematic of the 60GHz power amplifier (example 1)

TABLE I
DESIGN PARAMETERS AND THEIR RANGES FOR THE 60GHZ POWER
AMPLIFIER (EXAMPLE 1)

Parameters Lower Bound | Upper Bound
dinp, dins(pm) 20 100
wp, ws(m) 3 10
Vop(V) 1.5 2
Veas1 (V-) 1.2 2
Veas2(V) 1.2 2
Vi1 (V) 0.55 0.95
V2 (V) 0.55 0.95
nf (integer) 2 5

efficiency at Pigp is 9.85% and the power gain is 10.73 dB.
S-parameter simulation shows that the lowest Rollet stability
factors (K factors) is 10.68, which is larger than 1, and |A| is
smaller than 1, so the obtained circuit design is unconditionally
stable [35]. The simulation results are shown in Fig. 7. The
time consumption for GASPAD to synthesize this PA is 42
hours.

B. Test Example 2

The second example is a 60GHz two-stage PA, and each
stage is realized by a neutralized common-source (CS) [26]
stage. The transistor in the output stage has six fingers and
the number of fingers of a transistor in the driver stage is
a design variable. Also, the layouts of the transistors with
different number of fingers are designed beforehand by the
designer. The output load impedance is 50€2. The schematic
is shown in Fig. 8. Two experiments are carried out. The first
one uses the XFMR matching network, while the second one
uses the XFMRTL matching network. There are two biasing
voltages: Vj; and Via. The supply voltage of this example is
set to 1V, The ranges for the design variables are summarized
in Table II. For the PA using the XFMR matching network,

Fig. 6. Layout of the PA synthesized by GASPAD (example 1)
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(c) Simulated output power of the 60GHz PA (example 1)

Fig. 7. The simulated performances of the 60GHz PA (example 1) synthesized
by GASPAD

there are 15 parameters, while for the PA using the XFMRTL
matching network, there are 33 design parameters.
The synthesis problem is:

maximize PAE(QP4p)
s.t. Pigp = 10dBm (12)
G, = 10dB

The PA using the XFMR matching network is synthesized
first. After 427 evaluations, GASPAD obtained the optimized
design. The layout of the synthesized PA is shown in Fig. 9.
The 1dB compression point is 10.12dBm, the power added
efficiency at Pigp is 10.14% and the power gain is 16.22dB.
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Fig. 8. Schematic of the 60GHz power amplifier (example 2)
TABLE I

DESIGN PARAMETERS AND THEIR RANGES FOR THE 60GHZ POWER
AMPLIFIER (EXAMPLE 2)

Parameters Lower Bound | Upper Bound

dinp, dins(um) 20 100
wp, ws(pm) 3 10
1tp, lts(pm) 0.1 50
wip, wis(um) 3 10

" dpp, dps(pm) 3 10
Vi (V) 0.55 0.95
Via (V) 0.55 0.95

nf (integer) 2 5

The time consumption for GASPAD to synthesize this PA is
76 hours. In the synthesis, we found that after 224 iterations
(about 44 hours), there is a solution satisfying the constraints
on Piap and G, with a PAE(@Pyyp) value of 9.02%.
After that, the PAE(@P4p5) value improves gradually to
10.14%. Another experiment is done for this circuit, where
by setting the Pygp constraint to be larger than 11dBm, the
final PAE(@Py4p) value is decreased to less than 10%. It
can be seen that when using the XEMR matching network,
there is a trade-off between PAE(QP45) and Pigp when
they are near 10% and 10dBm, respectively.

To enhance the performance, we then use the XFMRTL
matching network with thc same specifications and opti-
mization objective of (12). After 581 evaluations, GAS-
PAD obtained the optimized design with Pigp=11.47dBm,
Gp=11.23dB and PAE(QP45)=13.58%. S-parameter simu-
lation shows that the lowest K factor is 24.55, which is larger
than 1, and |A| is smaller than 1, so the obtained circuit design

Fig. 9. Layout of the PA synthesized by GASPAD (example 2a, I5
parameters)

Fig. 10. Layout of the PA synthesized by GASPAD (example 2b, 33
parameters)

is unconditionally stable [35]. The layout of the synthesized
PA is shown in Fig. 10, The simulation results are shown
in Fig. 11. The time consumption of GASPAD to synthesize
this PA is 106 hours. Clearly, the XFMRTL matching network
has improved the performances and GASPAD has successfully
solved this 33-parameter synthesis problem.

C. Comparisons with the State-of-the-art

Since a single simulation of a typical PA design costs 10
to 13 minutes, comparing with the conventional constrained
optimization algorithms costs a too long time. For example,
for the 581 evaluations used in the 33-parameter synthesis
problem of example 2, it is about 15 iterations for standard DE
when the population size (A) is 40. For typical medium-scale
constrained optimization problems, hundreds to thousands of
iterations are often needed based on a standard EA to get to
a similar result. Hence, we refer to the state-of-the-art 65nm
PA performances in literature. Although it is not fully precise
to compare post-simulation results with measurement results,
the quality of the design solutions obtained by GASPAD can
nevertheless be observed.

Table III shows the performances of five state-of-the-art PA
designs in 65nm CMOS technologies. The reported 60GHz
PAs are mainly optimized for saturated output power FPsq¢ and
maximum power added cfficiency (PAL(@QP;,;)). However,
as was said in Section I, optimizing PAEQP4p is more
essential, but is difficult to achieve by the available manual
design methods. Some PAEQP, 45 values of these circuits
are estimated from the figurcs in these papers. Note also
that the power combining technique is used in some of these
designs, which combines the output power of several PAs
and allows to improve the Pjqp performance, whereas this
technique is not used in the examples in this paper. Some
referred PAs also have three stages, which leads to a higher
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Fig. 11. The simulated performances of the 60GHz PA (example 2b, 33
parameters) synthesized by GASPAD

power gain,

From Table III, it is clear that the designs synthesized by
GASPAD are of very high quality.

It is interesting to discuss the relation of EMLDE [8] and
GASPAD. Compared to EMLDE, GASPAD possesses a much
stronger surrogate model assisted search method. On the other
hand, a main novelty in EMLDE is the decomposition method
which transforms a medium-scale synthesis problem into a
small-scale one, which is much easier to solve. For problems
that are capable for EMLDE (ie., mm-wave IC synthesis

TABLE Il
60GHzZ 65NM PAS PERFORMANCES

references| Prap(dBm| PAE G,(dB) | topology
(@P14B)
(%)

[27] 15.0 6.8 203 3-stage CS,
2-way power
combining

[36] 15.1 6.5 19.2 3-stage,
4-way power
combing

[26] 5.0 50 16.0 3-stage neu-
tralized CS

[37] 6.8 1.7 30.0 3-stage neu-
tralized CS

[38] 11.5 2.0 15.5 2-stage cas-
code, 8-way
power com-
bining

example | 14.87 9.85 10.73 2-stage cas-

1 code

example | 10.12 10.14 16.22 2-stage neu-

2(a) tralized CS

example | 11.47 13.58 11.23 2-stage neu-

2(b) tralized CS

only considering small-signal performances), directly apply-
ing GASPAD will have a reduced cfficiency, although still
practical. For those problems, a suggested method is to apply
GASPAD to each sub-problem decomposed by EMLDE.

D. Benchmark Problem Tests

[8] suggests to use proper mathematical benchmark prob-
lems in the EC field to test RF IC synthesis methods. This
has three advantages: (1) fast exact function evaluations for
having sufficient runs to test the robustness and (o compare
with other methods; (2) not limited to the technology used,;
(3) with known global optimal solution, providing a criterion
to judge the quality of a method. For the general mm-
wave IC synthesis problems, three factors are necessary to be
considered, which are: medium-scale, tight constraints (high-
performance specifications) and multimodal (local optima).
However, most of the available benchmark problems for tightly
constrained optimization problems are small-scale problems
(about 5 variables). Thus, we select a tightly constrained opti-
mization problem with 10 variables (P;) and a self-constructed
problem (P.) based on benchmark problems for unconstrained
optimization with 20 variables. The latter problem is highly
multimodal (numerous locally optimal points) both for the
objective function and the constraints. The two test problems
(P, and P,) are in the Appendix.

The GASPAD method is tested by these two problems using
20 runs. The parameters are the same as those in Section IV
(A). 1000 exact function evaluations are used for P; and 1500
exact function evaluations are used for P;. The results are
shown in Table IV.

From Table IV, it can be seen that the GASPAD method has
a good performance for the tested benchmark problems. For
P;, although the worst result is 107.82, such failure run only
happened a single time and the second worst result is 27.9,



TABLE TV
STATISTICS OF THE BEST FUNCTION VALUES OBTAINED BY GASPAD
OVER 20 RUNS

Problem | Opt. best worst median | Rinf
Py 24.31 24.31 107.82 24.32 0
Py 0 3.57¢-9 | 0.033 [ 5499 0

Opt. is the globally optimal objective function value of each problem. R ¢
refers to the number of runs whose final result is infeasible.

TABLE V
STATISTICS OF THE BEST FUNCTION VALUES OBTAINED BY SBDE OVER
20 RUNS
Problem Opt. best worst | median | Rins
P 2431 | 2431 | 512,25 24.31 0
P2 0 0 0.02 0.015 0

Opt. is the globally optimal objective function value of cach problem. Rin ¢
refers to the number of runs whose final result is infeasible.

compared to the globally optimal solution 24.31. For P, all
the results are very good.

The efficient tournament selection-based constraint handling
method [28] is widely used in various fields. Next, we com-
pare GASPAD with the selection-based differential evolution
(SBDE) for constrained optimization. SBDE combines the
tournament selection-based constraint handling method [28]
and the DE algorithm. The details of using this method for
RF passive components and for IC synthesis (without surrogate
model) are in [8], [11]. The DE parameters and the population
size A are the same as those in Section IV (A) and 20 runs
are performed. Note that no surrogate model is used, and the
number of evaluations is 40x 1000 and 40> 1500, respectively.
The results are shown in Table V.

Comparing Table V with Table IV, it can be seen that
GASPAD and SBDE have obtained comparable results for
these two problems in terms of solution quality. Then, we
compare the number of exact function evaluations, which dom-
inates the efficiency for computationally expensive optimiza-
tion problems. Since the convergence happens before using
all the allowed function evaluations, to mark the convergence
of GASPAD, we use a threshold, 4, which means that after
N, evaluations, the current best solution is feasible and the
improvement to the objective function is less than & after
that. Thus, we consider GASPAD converge at N, evaluations,
§ = 0.1 is used and we compare the median of the best
objective function values found so far in each iteration for
each run by both methods. We take the following information
from the available data:

s+ Gy, : the median of the best function values obtained
using N, exact function evaluations by GASPAD;

e Sp,.: the median of the best function values obtained
using N, exact function evaluations by SBDE;

o Hp__: the number of exact function evaluations needed
for SBDE to achieve the same function value as GASPAD
does.

The comparison results are shown in Table VI.
From the mathematical benchmark problem tests, it can
be seen that GASPAD can obtain a comparable result with

TABLE VI
COMPARISONS BETWEEN GASPAD AND SBDE OVER 20 RUNS

Problem | Ne. | G, SNe. Hp,. | speedup
P 884 24.4 1096.2 | 20280 23
Py 732 | 0.097 | 14829 | 12760 17

about 20 times less exact function evaluations than the popular
SBDE method.

V. CONCLUSIONS

In this paper, the first generalized mm-wave IC synthe-
sis method, called GASPAD, has been presented. GASPAD
achieves the three stated goals (being general for mm-wave
IC synthesis; being effective for obtaining highly optimized
design solutions; being efficient for finishing the synthesis in
a practical and acceptable time). This has been shown by
experiments on 60GHz power amplifiers and mathematical
benchmark problems. In addition, GASPAD has advantages
compared to available “experience and (rial” -based manual
design methods, and is not difficult to implement. The com-
bined high optimization ability and high efficiency is achieved
by the core ideas of the surrogate model-aware evolutionary
search mechanism (SMAS) that is suited for tackling tens
of design variables, and the extension and integration of a
selection-based constraint handling method into SMAS for
tackling multiple design specifications. Future works include
developing GASPAD-based software tools and developing
multi-objective mm-wave IC synthesis methods. Readers can
contact liubol68@gmail.com for theory and implementation
of GASPAD.
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APPENDIX
A. Benchmark Test Problem P

min (@) = 23 + 2% 4+ w132 — 1dzy — 1622 + (23 — 10)?
+4(zg — 5)2 + (25 — 3)2 + 2(zs — 1) + 523
+7(zg — 11)2 4+ 2(zg — 10)2 + (x10 — 7)* + 45

st. gi(T) = —105 + 4a; + 522 — 3z7 + 925 <0
92(2) = 10z — 8wz — 1727 + 225 <0
93(2) = —8x1 + 2 + 5zg — 2010 — 12 <0
04(T) = 3(z1 — 2)% + (2 — 3)? + 203 — Ty — 120 <0
95(7) = 527 + 8xa + (z3 — 6)% — 224 —40 < 0
gs('ﬂ?) =22 4 2(ze — 2)2 — 22129 + 1dw5 — 626 <0
g7(T) = 0.5(z1 — 8)% + 2(22 — 4)? + 323 — w6 —30 <0
gs(@) = —3x; + 622 + 12(29 — 8)® — T219 <0

z; € [-10,10],i =1,...,10
minimum : f(z*) = 24.30620906818
(13)
B. Benchmark Test Problem P



min f("i“) =1+ Z?,gl (100=z)” H?il cos( 103?.- )

4000

st gu(T) = —2000VEH DI _ gdo Ty cos(2rz)
—5<0

0(T)=-Yi 2 —10<0
z; € [—6,6],4=1,...,20

minimum : f(z*) =0

(14)

C. Benchmark Test Problem P

min f(g,) = —920e"%2 35 Lie 27 EEIT)" i, cos(2mz)

x € [—32.768,32.768],i = 1,...,30

minimum : f(z*) =0
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