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Abstract—In recent years, various methods from the evolution-
ary computation (EC) field have been applied to electromagnetic
(EM) design problems and have shown promising results. How-
ever, due to the high computational cost of the EM simulations,
the efficiency of directly using evolutionary algorithms is often
very low (e.g., several weeks® optimization time), which limits the
application of these methods for many industrial applications.
To address this problem, a new method, called Surrogate Model
Assisted Differential Evolution for Antenna Synthesis (SADEA),
is presented in this paper. The key ideas are: (1) A Gaussian
Process (GP) surrogate model is constructed on-line to predict
the performances of the candidate designs, saving a lot of
computationally expensive EM simulations. (2) A novel surrogate
model-aware evolutionary search mechanism is proposed, direct-
ing effective global search even when a traditional high-quality
surrogate model is not available. Three complex antennas and
two mathematical benchmark problems are selected as examples.
Compared with the widely used differential evolution and particle
swarm optimization, SADEA can obtain comparable results, but
achieves a 3 to 7 times speed enhancement for the antenna design
optimization.

Index Terms—Antenna design optimization, Antenna synthe-
sis, Surrogate model assisted evolutionary algorithm, Gaussian
process, Differential evolution, Efficient global optimization, Ex-
pensive black-box optimization

I. INTRODUCTION

In recent years, antenna synthesis / design optimization
through evolutionary algorithms (EAs) has been applied wide-
ly [11, [2], [3]. Because antenna synthesis often encounters
multimodal black-box optimization problems [2], it falls into
the playfield of evolutionary computation (EC) methods. At
present, differential evolution (DE) [4] and particle swarm
optimization (PSQ) [5] are the most popular algorithms in
the antenna synthesis area [1], [3]). Besides using canonical
DE and PSQ, various state-of-the-art methods in the EC field
have been introduced and successfully applied, such as a self-
adaptive DE [6] and the covariance matrix adaptation evolution
strategy (CMA-ES) method [7]. In addition, multi-objective
optimization of antennas [8], [9], [10] has been introduced.

Besides the cumrent research focus of applying and im-
proving EAs to generate better antenna designs, the research
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direction of efficiency enhancement is very important but
has not been well investigated yet. Electromagnetic (EM)
simulation is often a must in antenna synthesis, and the time
needed to perform an EM simulation for a candidate solution
varies from a few seconds to tens of minutes [11], or even
several hours. The EA-based synthesizer often needs 30000-
200000 evaluations (EM simulations) for antenna problems
[11]. It is clear that drastically enhancing the efficiency without
or with slightly sacrificing the performance is very significant
for antenna synthesis. To the best of our knowledge, most
of the current antenna synthesis methods accept the long
computational time because EA is often the only possible
method to obtain a very high-quality design. Nevertheless, a
few pioneer research works have been conducted concentrating
on efficiency enhancement. They can be classified into the
following categories:

» Space mapping [12], [13]
In efficient design optimization (synthesis) methods based
on space mapping, a relatively computationally cheap
coarse model (e.g., an EM simulation model with coarse
meshes) is constructed and optimized, in order to ap-
proximately locate the optimal subregion of the design
space. A surrogate model will then be constructed there,
which will be used to optimize the microwave component,
The intermediate optimal solutions will be verified by
expensive fine (high-fidelity) EM simulations and the
obtained simulation data will update the surrogate model.
The main limitation of such methods is that the success
of the space mapping mechanism comes from the basic
assumption that the optimal point of the coarse and the
fine models are not far away from each other in the
design space. However, this is not always true in practical
antenna design and often cannot be known beforehand.
Detailed analysis and experiments are in [14].
« Cooperation with EM simulation [15], [16]

For some structures, the speed of optimization can highly
be increased by only solving a single electromagnetic
computation problem for the whole optimization process.
In such cases, with the help of Maxwell’s equations, a
matrix equation is obtained which relates the optimiza-
tion variables and the fitncss function. The optimization
technique is applied on this equation to find the global op-
timum. The application of these techniques is somewhat
limited due to restrictions on the variables and fitness



function definition.

« Improving the search engine [7]
A typical method is illustrated in [7], which introduces
the CMA-ES method into the antenna design optimization
field. The main idea is to apply EAs which are able to
obtain a suitable solution with a reduced number of exact
function evaluations (computationally expensive EM sim-
ulations). Although more computational overhead may
be necessary for the evolution operations, the efficiency
can still considerably be enhanced since EM simulations
dominate the optimization time. This method is general
and up to 1.6 times speed enhancement has been shown
compared to the canonical PSO. Nevertheless, a more
considerable speed enhancement is needed in many cases.

« Surrogate model assisted evolutionary algorithm [10],
[11], [17]
The surrogate model assisted evolutionary algorithm
(SAEA) has been introduced into the antenna design op-
timization (synthesis) area in [10], [11], [17]. Unlike the
surrogate model in the space mapping-based methods, the
surrogate modeling and the evolution operations work in a
cooperative manner in SAEAs [14]. [17] and [11] use the
efficient global optimization (EGO) method [18] and the
ParEGO [19] method from the computational intelligence
field for the single- and multi-objective optimization of
antennas, respectively. Gaussian Process (GP) machine
learning [20] and the expected improvement (EI) [18]
prescreening are used. A new method is proposed in
[10] which integrates the GP machine learning and the
generation control-based method [21] to avoid incorrect
convergence. Considerable speed enhancement has been
shown in these methods. Although they are significant
contributions to the efficiency enhancement of antenna
synthesis, the dimensionality that can be handled by
these methods is not large (i.e., at most 8) [10], [11],
[17]. This is caused by the “curse of dimensionality” in
the computational intelligence ficld. More details will be
provided in Section II and Section IV, On the other hand,
for practical antenna synthesis, the design parameters can
vary from a few to more than 30, which poses a big
challenge for the present SAEA-based synthesis methods.

In this paper, a new efficient method is proposed for antenna
synthesis, called Surrogate Model Assisted Differential Evo-
lution for Antenna Synthesis (SADEA). This is a Gaussian
Process-based SAEA for computationally expensive black-
box global optimization problems. To address the “curse of
dimensionality”, a new evolutionary search mechanism and
the corresponding surrogate modeling method are proposed,
whose goal is to conduct effective and efficient global op-
timization for 10- to 30-dimensional problems when a very
limited number of EM simulations are allowed. DE is selected
as the search engine in SADEA, but the proposed SAEA
mechanism is also compatible with PSO, the genetic algorithm
(GA) and the evolution strategies (ES). The SADEA method
aims to:

» provide highly optimized results comparable to directly
using a standard EA with EM simulations in the opti-

mization loop;

« use much less computational effort compared with using
a standard EA with EM simulations, and as such make the
computation time of the synthesis much more practical;

» be general enough for most antenna synthesis problems,

especially for complex antenna synthesis problems with
around 20 to 30 design parameters.

The remainder of the paper is organized as follows. Section
11 briefly reviews the background and the challenges encoun-
tered in SAEA. Section III introduces the basic techniques
used in SADEA, the DE algorithm and the GP machine
learning. Section IV introduces the SADEA method. Section V
tests the SADEA method on three practical antenna examples
with 7, 10 and 19 parameters, respectively, as well as 30-
dimensional mathematical benchmark problems. The compar-
isons are performed to DE, PSO and two SAEAs. Concluding
remarks are presented in Section VL

II. BACKGROUND OF SURROGATE MODEL ASSISTED
EVOLUTIONARY ALGORITHMS

SAEA is a recent approach for dealing with computationally
expensive optimization problems. These algorithms employ
surrogate models to replace the computationally expensive
function evaluations (e.g., high-fidelity EM simulations). S-
ince the construction of the surrogate model and its use to
predict the function values cost much less effort than directly
embedding the computationally expensive function evaluator
(e.g., EM simulator) within the optimizer, the computational
cost can significantly be reduced. In recent years, many
surrogate modeling methods and the corresponding SAEASs
were investigated. Among them, Gaussian Process or Kriging,
response surface methods, artificial neural networks (ANN),
support vector machines and radial basis function models show
good performances and are widely used.

As has been said above, the surrogate modeling and the
evolutionary algorithm must work in a cooperative manner
in SAEA, instead of training the surrogate model in a pre-
processing phase (i.e., an off-line surrogate model). Earlier
methods, such as some examples in [22], do not consider the
model uncertainty in the evolution process. After a number
of samples with exact function evaluations, a surrogate model
is constructed and the predicted optimal points are evaluated
by exact function evaluations. The surrogate model is then
updated and the above steps are repeated until the convergence
is achieved. To address the issue of incorrect convergence
of the above method, individual and generation control-based
methods are introduced to consider the estimation error [21].
The goal is to determine when the surrogate model must be
updated (using more exact function evaluations) to avoid false
optima. These are the prediction-based methods.

Meanwhile, prescreening is introduced into SAEA (e.g.,
using the EI, or the lower confidence bound (LCB)) [18],
[23]. Instead of expecting the surrogate model prediction to
replace the exact function evaluation in the prediction-based
methods (the prediction uncertainty should be as small as
possible to that end), prescreening methods aim to select the
possible promising candidates from the newly generated can-
didate solutions utilizing the prediction uncertainty. Because



both the EA and the prescreening methods contribute to the
global search, prescreening-based methods can often detect
the globally or near globally optimal solutions efficiently for
small-scale problems. Note that most prescreening methods,
such as the EI, are specially defined for the GP model, because
they rely on the Gaussian distribution of the outputs.

However, the “curse of dimensionality” is a common prob-
lem to both kinds of SAEA. Some pioneer research works
on medium-scale (20- to 30-dimensional) SAEA are [24],
[25], [26]. For typical mathematical benchmark problems, a
reasonably good result can often be obtained by the methods
of [26] and [24], but they cost 6000 to 8000 exact function
evaluations, which are often too many for practical use. In
[25], promising results have been obtained for some bench-
mark problems using 1000 exact function evaluations, but
for others the results are not good enough, especially for
multimodal problems (i.e., problems having more than one
local optimum). To summarize, much effort is required to
develop both effective and efficient SAEAs for medium-scale
problems, which are adequate for the requirements of practical
antenna synthesis.

III. BASIC TECHNIQUES

The EA and the surrogate modeling method are the two
key components of an SAEA. In SADEA, the DE algorithm
is selected as the search engine and the GP machine learning
is selected as the surrogate modeling method. In the following,
brief introductions to these techniques will be provided.

A. GP machine learning

GP machine learning [20] assumes that the objective func-
tion is a sample of a Gaussian stochastic process. The distribu-
tion of the function value of a new point can be predicted by
the available points. Both a predicted value and a prediction
uncertainty are provided for a new point, and can be used by
the prescreening methods to select promising newly generated
candidates to perform (expensive) exact function evaluations.
We will now explain this.

Suppose that there are n training data z = (z1,22,...,2n)
and their corresponding exact function values are y =
(41,Y2,+ .. ,Yn). Using the GP model with the correlation
function Corr(z;, z;), the function value y(z*) at a new point
z* can be predicted as

i(=*) =ﬁL+TTRui(y—I,u) 4))
where
Rij = Corr(ziyz5),4,§ = 1,2,...,n
r = [Corr(z*,z1), Corr(z*, z2),...,Corr(z*,z,)]  (2)
fp=ITR')"UTR Yy
There are different correlation functions to describe the

correlation between two candidate designs. Eqn. (3) shows
an example of a correlation function:

Corr(zi, ;) = exp(— i, Oilal — abPr)
6,>0,1<p <2

where d is the dimension of = and @ is the correlation param-
eter which determines how fast the correlation decreases when

3

! moves in the I direction. p; is related to the smoothness of

the function with z!. To determine the parameters 0; and py,
GP machine learning maximizes the likelihood function:

1 o y—I)"RY(y —1p)

b= (2m)"/2(a2)n/2| R|1/2 exp(— )

)
4

where I is a n x 1 vector of ones. Assuming that ¢; and p;
are known (the variables in the likelihood function are just p
and a), by setting the derivatives of the likelihood function to
0, the value of u must be i from eqn. (2) and the value of o2
must be

&*=(y—IE) "R (y - Ign~" (5)

By substituting /i and &2 into eqn. (4), the likelihood function
only depends on 8, and p;. Then, egn. (4) can be maximized
to obtain the estimates of f; and ;. R and r are known based
on the obtained correlation function.

The prediction uncertainty 2 based on the best linear un-
biased prediction, which is used to assess the model accuracy,
is described as:

(") = *[I—r"R™ '+ (I —rTR™I1)*(ITRT'D) Y] (6)

Several prescreening methods can be used to measure the
“potential” of a candidate design based on the predicted value
(eqn. (1)) and the prediction uncertainty (eqn. (6)). Here
we introduce the LCB prescreening, which is then used in
SADEA. Considering a minimization problem,

Yien(2) = § — wi(z),w € [0,3] (7N

where w is a constant. With this prescreening, y»(2), instead
of fj(x) itself, is used to measure the quality of x. The LCB
prescreening balances the search between promising areas (i.e.,
with low §j(z) values) and less explored areas (i.e., with high
4(z) values). Following the suggestion in [23], w = 2 is used
for balancing the exploration and exploitation of LCB in our
method.

B. The DE algorithin

The DE algorithm outperforms many other EAs in terms of
solution quality and convergence speed [4] for optimization in
a continuous space. DE uses a simple differential operator to
create new candidate solutions and a one-to-one competition
scheme to greedily select new candidates. The DE algorithm
and its improvements have widely been used in antenna
synthesis. In the following, a brief introduction to DE will
be provided.

The it* candidate solution in the d-dimensional search space
at generation £ can be represented as

@§(t) = [85,1, Bi 3y s Bisa] (8)

At each generation ¢, the mutation and crossover operators are
applied to the candidate solutions, and a new population arises.
Then, selection takes place, and the corresponding candidate
solutions from both populations compete to comprise the next
generation. The operators are:



Mutation:

V;(t + 1) = ﬂ:best(t) +F(w7‘1(t) = g (t))
T1,T2 € {1,...,NP},T‘1 7&?’2 7&2

where V;(t+1) is a mutant counterpart in the {11 generation.
Indices r1 and 7y are randomly chosen and mutually different,
and also different from the current index i. NP is the
population size. Tpes:(t) is the best individual of the current
population. F' is the scaling factor. In this work, we use a
constant I,

There are several kinds of DE mutations, and the mutation
in eqn. (9) is called DE/best/1 strategy. The advantage is that
beneficial information can be shared more effectively, because
the current best individual participates in the generation of
all the V(¢ + 1). However, its drawback is that the diversity
of the generated population is lower. Another widely used
DE mutation is shown in egn. (10), called the DE/rand/1
strategy. Compared to eqn. (9), the only difference is that the
current best candidate, zpes¢(t), is replaced by a randomly
selected candidate x,, (1) from the current population. Using
this strategy, the convergence speed is slower than using
the DE/best/1 strategy, but the diversity of the population is
enhanced, avoiding premature convergence,

®

Vit +1) = @p (t) + F(ar, (1) — 25, ()
r1,72,73 €{1,..., NP}ri #roF#rs #i

Crossover: a trial vector U is generated as follows:

(10)

Us(t+1) = [Usa (¢ +1), Us2(t +1),..., Uialt +1)] (1D

U s (t41) = { Vig (t+1),if(rand(i, j) < CR)lj = randn(i)
x;,;(t), otherwise
(12)
where rand(i, j) is an independent random number uniformly
distributed in the range [0, 1]. Parameter randn(%) is a random-
ly chosen index from the set {1, ..., d}. Parameter CR € [0,1]
is a constant parameter called the crossover rate.

Selection:
zi(t+1) = {

where the function f is the objective function, i.e., the function
to be minimized. The candidate solution, z;(¢ + 1), becomes
a candidate solution in the new population. Then, the next
iteration begins. For more details about the DE algorithm,
please see [4].

Us(t + 1),if f(Ui(t +1)) < f(zi(t))
x;(t), otherwise

13)

IV. THE SADEA ALGORITHM

A. Analysis of the problem and motivations

By developing SAEAs, the high optimization ability of
EA and the computational cfficiency of the surrogate model
can be integrated to achicve the first two requirements from
Section I for small-scale problems. But medium and large-
scale optimization problems (e.g., complex antenna synthesis
problems with 10-30 design variables, the third requirement)
remain a challenge even for the state-of-the-art methods in the
computational intelligence field, hence the need for SADEA.

The success of an SAEA is highly affected by having a
high quality surrogate model. For prediction-based SAEAs,
the prediction error of the newly generated candidates should
be small enough to approximately replace the exact func-
tion evaluations. For prescreening-based SAEAs, a reasonably
good ranking needs to be obtained by the surrogate model
and the prescreening method. In either case, the quality of the
surrogate model is determined by several factors.

One of them is the surrogate modeling mechanism. GP
machine learning is used in SADEA. The reason is that
GP machine learning is a theoretically principled method for
determining a much smaller number of control parameters
compared to other surrogate modeling approaches [27], [28].
For some other kernel-based methods, such as ANN, over-
fitting occurs in many cases because the learning mechanism
is sensitive to the control parameters (e.g., number of neu-
rons in the hidden layer, the type of the transfer function).
However, the method to determine the control parameters is
not mathematically sound till now and much experience has
to be used. In addition, as the uncertainty for each predicted
point is provided in the GP model, various presceening meth-
ods are available, which provides additional help for SAEA.
Therefore, GP surrogate modeling is selected in SADEA.

Another important factor determining the quality of the sur-
rogate model is the number of training data. It is intuitive that
more sampling data (training data) are needed for medium-
and high-dimensional problems to construct a reasonably good
surrogate model: the higher the dimensionality, the more
training data are necessary. However, it has to be noticed that
the training data can only be provided by exact function eval-
uations, which is computationally expensive. This illustrates
why available state-of-the-art SAEAs in the computational
intelligence field either need a lot of function evaluations to
achieve reasonably good results, or use less exact function
evaluations but with suboptimal results. The former case is at
odds with the second requirement of SADEA and the latter
case is at odds with the first requirement of SADEA.

B. Key ideas of SADEA

To address this problem, the key idea of SADEA is to
investigate and to improve the cooperation between the surro-
gate modeling and the EA. Most available SAEAs are based
on standard EAs (e.g., the standard GA [24], [26], or the
standard g+ A\ ES [25]), which need complex replacements in
the selection operation. Since the newly generated candidates
often spread in different areas of the search space, in order
to make the replacements in these different subregions being
reliable, an accurate surrogate model for various kinds of data
(various subregions) is necessary. This can only be achieved
by using more exact function evaluations, which serve as the
training data or which are directly used for comparison and
replacement. SADEA, on the other hand, proposes a new
surrogate model-aware search mechanism collaborating with
a simplified GP model.

Acknowledging that the traditional high-quality surrogate
model covering various subregions to assist standard EAs is
difficult to construct with limited training data, a special kind



of surrogate model is needed and should be appropriately used
by the new search mechanism. In other words, the surrogate
modeling-aware search mechanism has three requirements: (1)
the search mechanism should be able to achieve global opti-
mization; (2) the surrogate model should be able to support the
correct selection or replacement in the search; (3) the number
of exact function evaluations should be as small as possible.
In SADEA, we construct a reasonably accurate GP model
only for the top-ranked candidate solutions among the newly
generated candidates in each iteration. In the search, we also
use the top-ranked candidates (in practice, the best candidates
based on prescreening) for exact function evaluation, which is
just supported by the surrogate model. Only one exact function
evaluation is used in each iteration,

Although only using a limited number of training data,
the above special surrogate model can be achieved if the
training data are near the top-ranked candidates in the group
of newly generated candidates. Considering that the GP mod-
el construction and prediction are based on the correlation
function (eqn. (3)), the available training data around the
candidate to be predicted contribute more than the training
data far away from it. For this reason, we select the latest
generated optimal candidates (except those iterations which
still use initial samples) as the training data. Assuming that
optimal solutions have a similar structure and that the fitness
values of the candidate solutions are improving, the latest
optimal candidates can be considered as being near to the
newly generated good candidates and can provide a good
surrogate model for them. Note that the quality of the GP
model constructed in this way may be poor when predicting
or ranking lower-ranked candidates. Therefore, we only use
the best candidate by prescreening in order to increase the
probability that the prescreening-based “best” candidate is
also top-ranked in reality. The detailed algorithm will be
described in the next subsection.

C. The general framework of SADEA

Assume that our optimization problem is to minimize
y = f(z) and = € [a,b]? (a negative sign can be added for
maximization). Like most other SAEAs, SADEA records all
the exactly evaluated solutions and their function values in
a database. The database is constructed by the values z and
their corresponding function values y. Once an exact function
evaluation is carried out for a new z, the = and its exact (not
predicted) function value y will be stored in the database. For
the initialization of the database, a Design of Experiments
(DOE) method, Latin Hypercube sampling (LHS) [29] is used.
The LHS sampling method samples the design space more
uniformly, and hence, needs fewer samples to achieve a more
effective sampling. LHS and other DOE methods have widely
been used for the database initialization in SAEAs [18]. The
SADEA algorithm works as follows:

Step 1: Use the Latin Hypercube sampling to generate o
solutions from [a,b]%, evaluate all the individuals
using exact function evaluations and then use them
to form the initial database.

Step 2: If a preset stopping criterion is met (e.g., a maxi-
mum number of exact function evaluations), output

Initialize the Select T training
database data
Stopping GP Surrogate
Y Criterion? modeling
L 1
+
Select A best .
individuals Prescreening
Qutput 1 l
DE mutation Sel_ect'ﬂje top1
individual
l Exact function
DE crossover = evaluation,
update database

Fig. 1. The flow diagram of SADEA

the best solution from the database; otherwise go to
step 3.

Step 3: Select the A best solutions (i.e., with the lowest
function values) from the database to form a popu-
lation P. Update the best solution obtained so far.

Step 4: Apply the DE mutation (eqn. (9) or (10)) and
crossover (eqn. (12)) operators on P to generate A
child solutions.

Step 5: Take the 7 newest solutions from the database (i.e.,
the last 7 solutions from the database) and their
function values as the training data to build a GP
surrogate model.

Step 6: Prescreen the A child solutions generated in Step 4
by using the GP model from Step 5 with the LCB
prescreening.

Step 7 : Evaluate (exact function evaluation) the pre-
screened best child solution from Step 6, add this
evaluated solution and its function value to the
database. Go back to Step 2.

The flow diagram of SADEA is shown in Fig.1.

In SADEA, the DE mutation and crossover operators are
used to generate new candidates, but a very different search
framework is proposed in order to cooperate with the surrogate
modeling. Two types of mutation are introduced in Section
III, the DE/best/1 mutation and the DE/rand/1 mutation. Ac-
cording to Section III (B), the advantage of the DE/best/1
mutation is to generate optimal solutions more efficiently,
while for the DE/rand/]1 mutation, premature convergence can
often effectively be prevented because of the high diversity of
the generated solutions. Empirical studies show that in most
cases the diversity of the population is enough when using
the DE/best/1 mutation. However, in some cases, the design
parameters must be an integer or discrete number, which may
be enforced by the meshing and the EM simulation tools. For
such cases, the DE/rand/l mutation is necessary. Examples are
given in Section V. Besides the mutation operator, quantization
methods [4] need to be used. In all the DE search operators,
floating numbers are always used, while these floating numbers
are only rounded to the nearest allowed values in the function
evaluation when necessary. More details are in [4]. The goal



of the DE/rand/1 mutation and the quantization method is to
maintain the diversity and the exploration ability as much as
possible when the diversity is lost to some extent due to the
rounding. However, the advantage of the DE algorithm is the
global optimization in a continuous space, instead of integer
programming [30]. For such problems, we recommend the P-
SO or the ant colony algorithm (ACO). Note that this surrogate
model-aware search framework, which is the main contribution
of SADEA, is general and compatible with different kinds of
EAs (e.g., PSO, ES, ACO) as well as with many state-of-the-
art EA-based methods for antenna synthesis.

D. Parameter settings of SADEA

1) Parameter setting rules: There are several control pa-
rameters in SADEA. In the following, some guiding rules
based on references and empirical investigations are provided.

o DE parameters (the scaling factor F' and the crossover
rate C'R): The setting of the DE parameters has been well
investigated in [4]. We suggest to set I to 0.8, and CR to
0.8, which are used in all the experiments in Section V.
Empirical studies show that highly optimized results can
often be obtained with a good convergence speed using
this sctting. For some problems with quite flat overall
shapes (e.g., Rastrigin function), the value of CR can be
decreased to obtain highly optimized results.

o Parameters in surrogate modeling: The coDACE toolbox
[31] is used. The number of training data 7 is decided
by the trade-off between the surrogate model quality and
the surrogate model training time. We suggest to use
80 to 120 for 7, which results in a reasonably good
surrogate model and an efficient GP model training. In
the experiments, 7 = 100 is used.

o LCB parameter: w needs to be set when using LCB. We
use w = 2 as suggested by [25], [23].

» The parameters in the search framework: The number of
initial samples o is suggested to be set between 3 x d
to 5 x d. The population size A is suggested to be set
between 40 and 60 for 10- to 30-dimensional problems.
In the following, A = 50 is used for problems with 10
or more variables, and A = 40 is used for problems with
less than 10 variables.

2) Discussions: In the following, some experimental results
are provided to clarify some parameter setting rules. Mathe-
matical benchmark problems are used (see Appendix) and the
statistics are based on 20 runs.

We first analyze the sctting of I and «. The 10-dimensional
Ackley function is used as the test bench, which is a highly
multimodal problem (with numerous local optima). 700 func-
tion evaluations are used. According to the above parameter
setting rules, we use /* = 0.8 and a = 40 as the reference
setting (the other parameters follow the above rules), which
provides the reference result of SADEA. We then revise F" and
o for comparisons. In each experiment, only a single parameter
is revised. The results are shown in Table I. It can be seen
that: (1) Using a small scaling factor £ is not a good choice
for SADEA, because the exploration ability will decrease. (2)

TABLE 1

STATISTICS OF THE SADEA RESULTS FOR DIFFERENT I AND a SETTINGS

Settings best worst average std
Ref 7.05¢-5 | 1.57e-4 | 1.19e-4 | 1.28e-4
F=05]| 635 2.58 0.65 0.93
F=0.6| 94e5 7.35 0.85 2.31
a =30 0 1.81e-4 | 9.1Ge-5 | 7.7%-5
a=50 | 897e-5 | 1.59e-4 | 1.20e-4 | 2.07e-5
TABLE II

STATISTICS OF THE SADEA RESULTS FOR DIFFERENT A SETTINGS

Settings best worst | average | std

Ref 1.24e-4 | 0.036 0.014 0.01
A=230 | 4.26e-6 | 0.62 0.13 0.21
A=70 | 4.le3 0.51 0.13 0.17

Good results can be obtained using 3 x d to 5 x d initial
samples, which validates the empirical rules.

We then analyze the setting of A. The 15-dimensional
Griewank function is used as the test bench, which is a
highly multimodal problem. 800 function evaluations are used.
Because there are 15 decision variables, A = 50 is used as the
reference setting. For other parameters, besides those with a
recommended setting of a single value, o is set to 70. X is
then revised to 30 and 70. The results are shown in Table IL
It can be observed that the results of using A = 30 and A = 70
are worse than that of the reference setting A = 50, although
they are still good for this problem. When observing the
convergence curve, it was found that when using A = 30, 40%
of the runs got premature convergence, while using A = 70,
50% of the runs show that the convergence is not achieved yet
after 800 evaluations, so A = 50 is a good compromise.

V. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, the SADEA algorithm is demonstrated for
the optimization of three complex antennas with increasing
simulation cost and two mathematical benchmark problems.
A 60GHz on-chip wireless antenna (10 design parameters),
a four-element linear array antenna (19 parameters) and a
two-dimensional antenna array (7 parameters) are selected,
ADS-Momentum is used as the EM simulator for the first
example and Magmas [32], [33] is used as the EM simulator
for the second and the third example. Because of the meshing
accuracy required by Magmas, all the variables in the second
example must be integers and the grids are set to 0.2inm and
0.5mm for the third example [34]. The bounds of the design
variables are set both by the design rules of the technology
used and the experience of the designer. One evaluation of a
candidate solution costs about 4 minutes for the first example,
2 to 4.5 minutes for the second example and 11-15 minutes
for the third example, respectively. For the first example,
SADEA stops when the performance cannot be improved
for 30 consecutive iterations. For the second example, the
synthesis time is restricted to a night's time (about 12 hours)
and we restrict the number of EM simulations to 600 in the
experiment. For the third example, we restrict the synthesis (o
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Fig. 2. Proximity coupling scheme and final layout of the optimized antennas
(antenna example 1)

be finished in three days and at most 350 EM simulations are
allowed. The first example is run on a PC with Intel 2.4GHz
Xeon CPU with 12GB RAM, the second example is run on
a PC with 2.0GHz CPU with 128GB RAM and the third
example is run on a work station with an Intel(R) 17 2.8GHz
CPU with 4GB RAM. All the time consumptions reported in
the experiments are clock time. To test the effectiveness of
SADEA for tackling the “curse of dimensionality’, two 30-
dimensional multimodal benchmark problems [24] are used
in Section V(D). Various widely used methods are compared
with SADEA in the following subsections.

A. Example 1: Inter-chip wireless antenna

Inter-chip antenna design is a recent popular antenna prob-
lems [35]. With the rapid growth in high-frequency integrated
circuit technology, the new method of wireless inter-chip
communication is proposed as an alternative solution with
some advantages compared to wired chip interconnection [36].

This example analyzes a problem of short-range communi-
cation between three antennas at 60GHz, shown in Fig. 2. In
this inter-chip communication scheme on a 90nm CMOS sil-
icon technology as the substrate, the antenna 2 communicates
with the antenna 3, and both of them receive interferences from
the antenna 1 which is a fixed wideband dipole. The antennas
2 and 3 are decided to be meander-line dipoles. The goal of
the optimization is to maximize the coupling from antenna 2
to antenna 3 and at the same time to reduce the crosstalk from
antenna 1. Therefore the optimization problem is defined as
follows:

maximize coupling(antenna2, antenna3)
s.t. crosstalk(antennal,antenna2) < —30dB

14

The distance between antenna 2 and antenna 3 is 2.5mm
(see Fig. 2). In order to make sure that the crosstalk from
antenna | to both antenna 2 and 3 is the same, antenna 2 and
3 are mirrored. However, both of them can be asymmetrical as
shown in Fig. 2. Bach meander line antenna has 5 horizontal
sections on each of the arms, namely L1 to L5 on one arm

TABLE II
VALUES OF THE VARIABLES OF THE OPTIMIZED ANTENNAS 2 AND 3 (un)
FOR ANTENNA SYNTHESIS EXAMPLE 1

L1 L2 L3 L4 L5

8.34 13680 [ 834 823.33 [ 23.19

L6 L7 L8 L9 L10

328.85 | 328.85 [ 328.85 6.76 6.69
-15 =
e —

e
freq=60.00GHz =~
dB(S(2,3))=-18.250

a0

E req=60.00GHz
IdB(5(1,2))=-30.184
450

TS R B Vi o Tl T
55 56 57 58 59 60 61 62 63 64 65
freq, GHz

Fig. 3. Simulated coupling from antenna 2 to antenna 3 and the simulated
crosstalk from antenna 1, optimized as a function of frequency at 60GHz by
SADEA

and L6 to L10 on the other arm. Thus, another constraint is
the total length of each arm which is fixed to be 1mm, as
stated in eqn. (15), which can be handled in the algorithm'’s
data generation. The minimum values of these variables are
bounded by the selected technology.

5 10
Z L= Z Ly, = lmm

m=1 m=6

(15)

The value of the antenna width La is 500pm. The dipole
length of antenna 1 is 2.6mvm and the dipole is situated at
1mm from the other antennas.

In SADEA, the initial number of samples is set to 40
(because there are 10 design variables) and all the other
parameters are shown in Section IV(D). The layouts of the
optimized antennas are shown in Fig. 2, and the obtained
values of the 10 design parameters are shown in Table III.
The coupling between antenna 2 and 3 is optimized to -18.25
dB while the constraint is satisfied with -30.18 dB crosstalk.
Fig. 3 shows the simulation details.

The total number of exact evaluations of SADEA is 302,
costing 21 hours. The comparison method we have selected for
the first cxample is the sclection-based differential evolution
(SBDE) algorithm [37], which is widely used in single-
objective constrained optimization (including its variants). The
SBDE method for the same example takes 2000 iterations
to converge, with a computational time of 5.9 days. The
optimized performances are coupling (antenna 2, antenna 3)=
-18.84dB and crosstalk (antenna 1, antenna 2)=-30.30dB. It
can be seen that the performances of the optimized antennas
by SADEA and SBDE are comparable, but SBDE consumes
7 times more computational effort than SADEA.



TABLE V
THE SYNTHESIZED 19 DESIGN VARIABLES (BEST RESULT) OBTAINED BY
SADEA FOR ANTENNA SYNTHESIS EXAMPLE 2

Fig. 4. Four-element antenna array top view (antenna example 2)

TABLE IV
RANGES OF THE 19 DESIGN VARTABLES (ALL SIZES IN MM) FOR ANTENNA
SYNTHESIS EXAMPLE 2

Variables | A1 | A2 A3 [ Ad[ A5 [ A6 | B1 | B2 | B3
Lower bound | 4 q 4 12 4 4 6 4 4
Upper bound | 12 12 12 1 30 12 1 28 | 20 16 8 40
X
5
12

Variables | B5 | C1 | C2 [ C3|C4[C5] C6 | D1
Lower bound 4 4 4 4 2 12 4 2
Upper bound | 16 12 12 12 1726 | 30 12 | 24

B. Example 2: Four-element linear array antenna

A highly compact low-cost and strongly coupled four-
element linear array antenna [38], [39] is chosen as the second
example in this subsection. This antenna has been optimized
by the Particle Swarm Optimization (PSO) algorithm [40],
[38]. We therefore use PSO with the same settings as in [40]
but using the fitness function defined in this subsection as
the comparison reference. The latter obtains a better result
compared to [40]. The goal is to maximize the realized gain in
the operating frequency range from 3.4GHz to 3.8GHz. In this
band, the S11 parameter should be below -10dB and the gain
should at least be 13dB. The substrate used is FR4. The perfor-
mances at five equidistant frequency points (3.4GHz, 3.5GHz,
3.6GHz, 3.7GHz and 3.8GHz) are evaluated. Therefore the
optimization problem is defined as follows:

maximize Yo, RGp
s.t. RGp > 12.54dB

where RGp = gain — 10 x logl0(1 — Reflection?) and
Reflection = 10511/20,

The topology of the four-element antenna is shown in Fig.
4 and the shape of the antenna is controlled by 19 design
parameters indicated in the figure. The ranges of the design
parameters are shown in Table IV.

For this example, 10 runs are carried out for both SADEA
and PSO. Thus, the consumed computational time for SADEA
is about 10 hours to 14 hours, which conforms to the time
constraint. In all the 10 runs using SADEA, the constraints are
satisfied and the average objective function value is 71.05dB
using 600 EM simulations. The variables of the best result
of the 10 runs are shown in Table V and the simulated
performance is shown in Fig. 5. Compared to PSO (using the
settings from [40]), about 1700 EM simulations are needed
to obtain a comparable average objective function value as
SADEA, so the speed enhancement of SADEA compared
to PSO is nearly 3 times for this example. Using PSO, the

(16)

Variables | A1.| A2 | A3 | Ad | A5 | A6 | B1 | B2 | B3 | B4
et weaxle Values 12 12 12 30 4 28 20 4 4 28
Variables | Bo | C1 [ C2 | C3 | 4| Co | C6 | D1 | X
Values 4 12 4 4 26 30 12 24 8
161
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Fig. 5. Realized gain of the antenna synthesized by SADEA (best result) for
antenna example 2

average objective function value after 3000 EM simulations is
71.65dB. The convergence curve of SADEA is shown in Fig.
6. It can be seen that the convergence tendency is very clear, so
it can be expected that the already good result will further be
improved when allowing more EM simulations. Note that this
example is an integer programming problem, but the search
engine of SADEA, the DE algorithm, is good at continuous
optimization problems. Considering that the surrogate model-
aware search framework in SADEA is also compatible with
search engines (e.g., PSO, ACQ) good at mixed integer-
discrete optimization problems, better performances can be
expected from such combinations, which is a future research
direction.

Fitness Value (dB)

75 1 L L L .

100 200 300 400 500

Number of EM simulations

600 700

Fig. 6. SADEA convergence (rend for the antenna synthesis example 2 in
600 EM simulations (average of 10 runs)
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Fig. 7. Topology of the two-dimensional antenna array

Besides PSO, we compare SADEA with a widely used
generation control-based SAEA [21], which is a popular CPU-
time reduction technique for expensive optimization problems.
With any EA, that method uses exact evaluations (in antenna
synthesis, these are EM simulations) for some generations,
and surrogate model predictions in other generations, which
is controlled adaptively according to the prediction error. In
[21], an ANN model is used, while the same GP model as
in SADEA is used here. DE with the same parameters as in
SADEA is also used for fair comparison. In 10 runs, all the
constraints are saltisfied, and the average objective function
value is 70.82dB, using about 1450 EM simulations. It can
therefore be observed that SADEA has clear advantages in
terms of efficiency compared to the reference method for this
example.

C. Example 3: Two-dimensional array

A two-dimensional array [34] is selected as the third exam-
ple. The topology and the design parameters (seven of them
are independent) are depicted in Fig. 7. To date, this topology
has the highest aperture efficiency for a medium-sized medium
bandwidth planar array (more than 10% bandwidth) as report-
ed in literature [34]. This topology was optimized using PSO
in [34]. The same objective function is used here, which is as
follows:

minimize E?:l M; + Z‘:’:l R;

$; = max(VSWR;, VSWR;p)

L; = max(13dB — Gaing, 0)

C =VVSWR; < VSWR;p AND VGain; > 13dB
VSW R;,if C'= True

R; = :
S;, otherwise

13dB — Glain,, if C' = True
M; = :

L;, otherwise
i=1,2,...,5.

(17)
where V.SREW; and (Gain; are the VSRW and the broadside
gain values at the selected five frequency points, i.c., 2.33GHz,
2.40GHz, 2.45GHz, 2.50GHz and 2.57GHz. The setting of the
specification V.SW R;p is quite complex and the details are
in [34]. For comparison, we use exactly the same parameter
ranges and grids, the same EM solver, the same simulation
method and fitness function as in [34].

TABLE VI
STATISTICS OF THE SADEA RESULTS FOR THE 30-d ACKLEY AND
GRIEWANK TEST PROBLEMS

Problem best worst average std
Ackley 1.9491 | 49640 | 3.0105 | 0.9250
Griewank | 0.7368 | 1.0761 | 0.9969 | 0.1080

Five runs are carried out for SADEA, PSO and DE, respec-
tively. The parameters of SADEA and DE are as described
in Section IV(D) and the PSO parameters are the same as
those in [34]. The average objective function value of SADEA
is 9.26 using 320 EM simulations. 126 EM simulations are
needed when using PSO to achieve a comparable result. It
can be observed that about a 3.5 times speed enhancement
can be obtained, thus decreasing the 1.5 weeks computational
time taken by PSO down to less than 3 days. After 2500 EM
simulations (about 20 days) using PSO, the average objective
function value is 9.19. Therefore, the result obtained by
SADEA within 3 days is of high quality. When applying DE,
1388 EM simulations are needed to obtain a comparable result
with SADEA (average over 5 runs). Compared to DE, more
than a 4 times speed enhancement is achieved by SADEA for
this example.

D. Benchmark problem tests

In SAEA research, mathematical benchmark problems are
often used to evaluate an algorithm. In this subsection, the
Ackley function and the Griewank function (see Appendix)
are used, and the dimensionality is selected to be 30. Note
that they are highly multimodal complex problems. The global
optimum of these two test problems is 0. 20 runs are performed
for each problem and 1000 exact function evaluations are used.
In SADEA, the initial number of samples is set to 100 (because
there are 30 design variables) and all the other parameters have
been shown in Section IV(D). The performance of SADEA
is shown in Table VI. It can be seen that the benchmark
problems are largely optimized by SADEA, and the optimized
solutions are already near the global optimum in only 1000
exact evaluations,

It is interesting to compare SADEA with the state-of-the-art
SAEAs for medium-scale problems. In the experiments of a
state-of-the-art method, GS-SOMA [24], these two benchmark
problems are also used. Table VII shows the comparison result
between SADEA and GS-SOMA. The two comparison items
are: (1) The average function value that GS-SOMA achieves
in 1000 exact function evaluations (the third column of Table
VII). This value is estimated from the figures showing the
convergence trends in [24]. (2) The number of exact function
evaluations GS-SOMA requires to achieve the same result
as SADEA achieves in 1000 function evaluations (the fourth
column of Table VII). In [24] GS-SOMA uses 8000 exact
function evaluations and the final results after 8000 exact
evaluations are shown by tables. As thc final result of the
first test problem is worse than the SADEA result, we write
>8000. For the second test problem, this number is estimated



TABLE VII
COMPARISON OF SADEA wITH GS-SOMA [24] ON COMMON TEST
FUNCTIONS

Commen Problem | SADEA (1000) | GS-SOMA (1000) | GS-SOMA (number) | speedup
Ackley 3.0105 20 >8000 >8
Griewank 0.9969 365 2500 2.5

from the figures showing the convergence trends in [24]. The
average values obtained by each method are compared.
From Table VII, it can be seen that for 30-dimensional
(medium-scale) complex problems, SADEA can achieve a
considerable speed enhancement even compared to the state-
of-the-art SAEA in the computational intelligence field.

V1. CONCLUSIONS

In this paper, the surrogate model assisted differential evo-
Iution algorithm for efficient antenna synthesis (SADEA) has
been presented. Experimental results show that SADEA can
achieve approximately 3 to 7 times efficiency enhancement
while providing highly optimized design solutions comparable
to standard evolutionary algorithms for antenna synthesis.
Therefore, the three goals of this work (high optimization
ability, high efficiency and general for complex problems up
to 20-30 dimensions) are achieved. SADEA addresses the
problem of medium-scale computationally expensive global
optimization, which is especially useful for on-chip and com-
plex antenna design optimization. This is achieved by the
key idea of the presented surrogate model-aware evolutionary
search mechanism. Future works will focus on integrating a
variety of search engines into the developed surrogate model-
aware search mechanism and extending SADEA to multi-
objective synthesis of antennas.

APPENDIX
Benchmark functions:
A. Ackley Problem
Tin f(a;) _ __206—0.2 F3e w? C% Z?:l cos(2mz;)

z € [—32.768,32.768],i = 1,...,d
minimum : f(z*) =0
(18)

B. Griewank Problem

2
min f(@) =14 30y gofg ~ Ilica e05(34)
z € [-600,600],i=1,...,d (19)
minimum : f(z*) =0
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